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Summary

Because of increasingly stricter environmental regulations, steel plants are at-
tempting to reduce the occurrence of (heavy) slopping, which can be accompa-
nied by large ejections of dust. They are also aiming to increase their produc-
tion capacity by e.g. investments in additional equipment and by improving
logistics. Reduction of the batch time in basic oxygen steelmaking might con-
tribute to the desired increase in production capacity if the converters are the
bottleneck in production.

Currently the desired temperature and steel composition are met by appli-
cation of a first principles static model, which determines the required raw
material input. This model is sometimes perceived as complicated. The set-
points of the control variables such as the addition rates, the lance height and
the oxygen blowing rate are based on standard operating procedures, which
have been developed during many years of practical experience. Operators
only deviate from these standard operating procedures when it is necessary,
for instance, when slopping occurs. It may be expected, that both the batch
time and the occurrence of slopping can significantly be reduced by optimizing
operating settings.

The objective of this thesis is to develop a dynamic control strategy for basic
oxygen steelmaking which both reduces the occurrence of slopping and in-
creases the production capacity by reducing the batch time. The development
of this strategy would greatly benefit from the continuous measurement of im-
portant process variables. However, due to the high temperatures and dusty
environment involved, measuring of important process variables is difficult. It
is therefore necessary to develop a dynamic process model that predicts im-
portant process variables. Dynamic modeling of the process enables dynamic
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optimization. The feasibility of measurements, modeling of the process and
dynamic optimization are studied subsequently in this thesis.

Chapters 1 and 2 contain an introduction and background information.

In chapter 3 the feasibility of the continuous measurement of the steel com-
position, the slag composition, the steel temperature and the foam height is
investigated. The high temperature, dusty environment and the lack of refer-
ence measurements cause most measurements to be infeasible.

To validate dynamic models of system behavior, however, continuous mea-
surements are needed. The decarburization rate and the accumulation rate of
oxygen inside the converter can be used for validation of the steel and slag
composition. The steel temperature can be approximated using the assump-
tion that the steel temperature increases linearly with the amount of oxygen
blown. For the validation of foam height no feasible continuous measurements
was found and since the occurrence of slopping is neither detected nor recorded,
a slop detection system is needed.

In chapter 4 a slop detection system is presented that can be used to detect
the occurrence of slopping. The slop detection algorithm is designed based on
the images taken by a camera viewing the converter mouth. With this algo-
rithm 73% of the slopping batches were detected within 5 seconds and 94% of
the non-slopping batches were correctly detected. The algorithm is relatively
simple and can thus easily be used in on-line applications such as an alarm or
a slop repression system.

In chapter 5 the first principles static model, which is sometimes perceived
as complicated, is compared to a statistical static model, which requires less
expert knowledge. Both static models are used to calculate the amount, compo-
sition and temperature of the raw material input (scrap, additions, hot metal,
oxygen) with which the required steel temperature and steel carbon concen-
tration can be reached.

Using Principal Component Analysis it is shown, that the inputs are highly
correlated and that the data can be divided into two separate clusters. For
each of the clusters a separate statistical model was developed using Partial
Least Squares, since this technique can cope with highly correlated input data.
The inputs have a similar influence on the steel carbon concentration and steel
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temperature in the first principles model and in the PLS models. The PLS
models are less accurate than the currently used first principles model and the
PLS models are, therefore, not a good alternative.

The lower accuracy of the PLS models might be caused by the fact that impor-
tant process variables, such as the heat loss, are estimated in the first principles
model, but they are not used as inputs in the PLS models. The lower accuracy
may also be caused by the fact that the assumption of linearity may not be
valid.

In chapter 6 a dynamic process model for the main blow is developed, which
describes the steel and slag composition. Since it is shown in chapter 3 that
the steel and slag composition can be validated by the measured decarburiza-
tion rate and the accumulation rate of oxygen, the step responses in these two
signals are used to develop de main blow model. The measured step responses
can be explained by a simple dynamic model consisting of a carbon and an
iron oxide balance. The developed dynamic process model is only valid for the
main blow and can thus not be used for the entire batch.

In chapter 7 the dynamic process model described in chapter 6 is extended
in such a way that it calculates the temperature, steel composition and slag
composition during the entire batch. In the dynamic process model the lin-
ear approximation described in chapter 3 is used to calculate the temperature.
The steel and the slag composition are validated by the measured decarbur-
ization rate and accumulation rate of oxygen. The calculated decarburization
rate and the measured decarburization rate correspond well during the entire
batch. The variance accounted for in the decarburization rate and the accu-
mulation rate of oxygen is 73% and 63% respectively.

The accuracy of prediction of the carbon concentration of the static model is
higher than that of the dynamic model. This is due to the fact that the level
of detail of the static model is higher than that of the dynamic model. The
dynamic model does not make the static model redundant and the dynamic
model should always be used in combination with the static model.

In chapter 8 the dynamic model described in chapter 7 is extended with a
slop probability model. The majority of the slopping occurrences (61%) coin-
cide with a maximum in the iron oxide concentration in the slag. This type
of slopping is modeled using a statistical two layer hierarchical model. In the
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first layer the slop sensitive period in the batch is identified using a boolean
expression. In the second layer, the probability of slopping is calculated using
a logistic model. The hierarchical model is simple, using only a small number
of input variables. Nevertheless, it has an accuracy of prediction of 73% for
slopping batches and 71% for non-slopping batches.

In chapter 9 the process is dynamically optimized with the goal to minimize the
batch time while observing the slopping constraint. Using the dynamic model
described in chapters 6 and 7 as the state equations and the slop probability
model described in chapter 8 as a constraint, it is derived, that dynamic opti-
mization results in a bang-bang control strategy in which the lance height and
the oxygen blowing rate are either their minimum or their maximum value.

Using the optimal strategy and a maximum oxygen blowing rate of 4.95.10%
[”ng’] the batch time can be reduced with 4.6%. Using a maximum oxygen
blowing rate of 5.5.10* ["ng] the batch time can even be reduced with 12.4%.
Due to modeling errors, this reduction in batch time may not be realizable when
the calculated optimal strategy is applied in practice. The calculated optimal
strategy, however, indicates the direction in which the currently used control
strategy can be changed to reduce the batch time and to prevent slopping.



Samenvatting

Door steeds strenger wordende milieuwetgeving, proberen staalfabrieken (hevig)
slobben, dat gepaard kan gaan met de uitstoot van stofdeeltjes, te voorkomen.
Tegelijkertijd proberen ze hun productiecapaciteit te verhogen, bijvoorbeeld
door investeringen in extra apparatuur en door verbetering van de logistiek.
Een vermindering van de batchtijd in het oxystaalproces zou aan de gewenste
toename in productiecapaciteit kunnen bijdragen als de converters de bottle-
neck in productie zijn.

Op dit moment wordt de gewenste staalsamenstelling en staaltemperatuur
gehaald door toepassing van een fysisch statisch model, dat de benodigde
hoeveelheid grondstoffen bepaalt. Dit model wordt soms ingewikkeld gevon-
den. De setpoints van stuurvariabelen zoals de toevoersnelheden, de lans-
hoogte en de zuurstofblaassnelheid zijn gebaseerd op standaard procedures,
die ontwikkeld zijn op basis van vele jaren praktische ervaring. Operators wij-
ken alleen van deze standaardprocedures af als dat nodig is, bijvoorbeeld als
slobben optreedt. Het is te verwachten, dat zowel de batchtijd als het aantal
keer dat slobben optreedt aanzienlijk kan worden verminderd door optimalisa-
tie van de stuurvariabelen.

Het doel van dit proefschrift is het ontwikkelen van een dynamische stuurstrate-
gie, die zowel het aantal keer dat slobben voorkomt als de batchtijd vermindert.
Het ontwikkelen van deze strategie zou zeer geholpen zijn door de continue me-
ting van belangrijke procesvariabelen. Door de hoge temperatuur en de stoffige
omgeving is het echter moeilijk om belangrijke procesvariabelen te meten. Het
is daarom noodzakelijk om een dynamisch procesmodel te ontwikkelen, dat de
belangrijke procesvariabelen kan voorspellen. Door dynamische modellering
van het proces is ook dynamische optimalisatie mogelijk. De haalbaarheid van
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metingen, het modelleren van het proces en dynamische optimalisatie worden
achtereenvolgens behandeld in dit proefschrift.

Hoofdstukken 1 en 2 bevatten een introductie en achtergrond informatie.

In hoofdstuk 3 wordt de haalbaarheid van de continue meting van de staal-
samenstelling, de slaksamenstelling, de staaltemperatuur en de schuimhoogte
onderzocht. De hoge temperatuur, de stoffige omgeving en het gebrek aan
referentiemetingen zorgen ervoor dat de meeste continue metingen niet haal-
baar zijn.

Om dynamische modellen van het proces te kunnen valideren zijn continue
metingen echter wel noodzakelijk. De ontkolingssnelheid en accumulatiesnelheid
van zuurstof in de converter kunnen voor validatie van de staal- en slak-
samenstelling gebruikt worden. De staaltemperatuur kan worden benaderd
door gebruik te maken van de aanname dat de staaltemperatuur lineair stijgt
met de hoeveelheid geblazen zuurstof. Voor validatie van de schuimhoogte is
geen haalbare continue meting gevonden en omdat slobben niet gedetecteerd
of geregistreerd wordt is een slobdetectie systeem noodzakelijk.

In hoofdstuk 4 wordt een slobdetectie systeem gepresenteerd waarmee het
plaatsvinden van slobben kan worden gedetecteerd. Het slobdetectiealgoritme
is ontworpen gebaseerd op beelden die door een camera zijn opgenomen, die
gericht staat op de bovenrand van de converter. Met dit algoritme is 73%
van de slobbende ladingen binnen 5 seconden gedetecteerd en is 94% van de
niet-slobbende ladingen correct herkend. Het algoritme is relatief eenvoudig
en kan dus zonder problemen worden toegepast in on-line applicaties zoals een
slobalarm of een slobrepressiesysteem.

In hoofdstuk 5 wordt het fysische statische model, dat soms ingewikkeld wordt
gevonden, vergeleken met een statistisch statisch model, waarvoor minder
specifieke model kennis noodzakelijk is. Beide statische modellen worden ge-
bruikt om de hoeveelheid, de samenstelling en de temperatuur van de grond-
stoffen (addities, schrot, hot metal en zuurstof) te berekenen, bij welke de
benodigde staaltemperatuur en koolstofconcentratie gehaald worden.

Door gebruik te maken van Principal Component Analysis is het aangetoond,
dat de modelingangen sterk gecorreleerd zijn en dat de data in twee verschil-
lende clusters opgedeeld kan worden. Voor elk van de clusters is een apart
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statistisch model ontwikkeld met behulp van Partial Least Squares omdat deze
techniek om kan gaan met gecorreleerde ingangsvariabelen. De ingangsvariabe-
len hebben in het fysische model en in de twee PLS modellen een soortgelijke
invloed op de staaltemperatuur en koolstofconcentratie. De PLS modellen zijn
minder nauwkeurig dan het op dit moment gebruikte fysische model en ze zijn
dan ook geen goed alternatief.

De lage nauwkeurigheid van de PLS modellen zou veroorzaakt kunnen zijn
doordat belangrijke procesvariabelen, zoals het warmteverlies, in het fysische
model geschat worden, maar niet als inputs worden gebruikt in de PLS model-
len. De lagere nauwkeurigheid zou ook veroorzaakt kunnen worden doordat de
aanname van lineariteit mogelijk niet geldig is.

In hoofdstuk 6 is een dynamisch proces model voor de mainblow ontwikkeld,
dat de staal- en slaksamenstelling beschrijft. In hoofdstuk 3 is aangetoond,
dat de staal- en slaksamenstelling kunnen worden gevalideerd door de geme-
ten ontkolingssnelheid en accumulatiesnelheid van zuurstof in de converter.
Daarom worden de stapresponsies in deze twee signalen gebruikt om het main-
blow model te ontwikkelen. Het is aangetoond, dat de gemeten stapresponsies
kunnen worden verklaard door een eenvoudig dynamisch model dat bestaat
uit een koolstof- en een ijzeroxidebalans. Het ontwikkelde dynamische proces-
model is alleen geldig voor de mainblow en kan dus niet voor de gehele lading
worden gebruikt.

In hoofdstuk 7 is het dynamische model, dat in hoofdstuk 6 is beschreven,
op zo'n manier uitgebreid, dat de temperatuur, slaksamenstelling en staal-
samenstelling gedurende de hele lading kunnen worden berekend. In het dy-
namische procesmodel wordt de lineaire benadering, die in hoofdstuk 3 is
beschreven, gebruikt om de staaltemperatuur te berekenen. De gemeten en
berekende ontkolingssnelheid komen nauw overeen gedurende de hele batch en
de variance accounted for voor de ontkolingssnelheid en de accumulatiesnelheid
van zuurstof in de converter is respectievelijk 73% en 63%.

De nauwkeurigheid van de voorspelling van de koolstofconcentratie van het
staal is van het statische model groter dan die van het dynamische model.
Dit komt doordat het detailniveau van het statische model groter is. Het dy-
namische model zal het statische model dan ook niet overbodig maken. Het
dynamische model zal altijd in combinatie met het statische model gebruikt
moeten worden.
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In hoofdstuk 8 is het dynamisch model dat in hoofdstuk 7 is beschreven uitge-
breid met een slobkans berekening. De meerderheid van de slobbers (61%) vin-
den tegelijkertijd met het maximum in het ijzeroxidegehalte in de slak plaats.
Dit soort slobber is gemodelleerd met een statistisch tweelaags hierarchisch
model. In de eerste laag wordt de slobgevoelige periode in de batch bepaald
met behulp van een boolean vergelijking. In de tweede laag wordt de slobkans
berekend met behulp van een logistic model. Het hierarchische model is een-
voudig en maakt gebruik van slechts een beperkt aantal input parameters. Des-
alniettemin heeft het een nauwkeurigheid van 73% voor slobbende ladingen en
71% voor niet slobbende ladingen.

In hoofdstuk 9 is het proces dynamisch geoptimaliseerd met het doel de batchtijd
te minimaliseren terwijl tegelijkertijd slobben wordt voorkomen. Gebruikma-

kend van het dynamisch model beschreven in de hoofdstukken 6 en 7 als state

equations en het slobkans model beschreven in hoofdstuk 8 als een constraint,

is het af te leiden, dat dynamische optimalisatie resulteert in een bang-bang

control strategie waarbij de lanshoogte en de zuurstofblaassnelheid ofwel hun

minimum ofwel hun maximum waarde hebben.

De optimale strategie kan bij een maximum zuurstofblaassnelheid van 4.95.10%

[”—’,?3] de batchtijd reduceren met 4.6%. Gebruikmakend van een maximum

zuurstofblaassnelheid van 5.5.10% [”TmB] kan de batchtijd zelfs met 12.4% wor-
den verkort. Deze vermindering van batchtijd zou, als de optimale strategie
in praktijk wordt toegepast, mogelijk niet volledig gerealiseerd kunnen worden
i.v.m. model mismatch. De berekende optimale strategie geeft echter een in-
dicatie van de richting waarin de huidige stuurstrategie veranderd kan worden
om de batchtijd te verminderen en slobben te voorkomen.
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Introduction

In this introduction the current situation and recent developments in basic oxy-
gen steelmaking are discussed. The ambition of steel plants to increase produc-
tion capacity and the increasingly stricter environmental requlations call for a
change in the control strategy of basic oxygen steelmaking. This thesis deals
with the development of a dynamic control strategy for basic oxygen steelmak-
ing. How the new control strategy can be accomplished is addressed in the thesis
objective. The thesis structure will also be discussed.

1.1 Basic oxygen steelmaking

Basic oxygen steelmaking is a batch process in which steel is made from lig-
uid iron [1; 2; 3]. The concentration of elements such as carbon, manganese
and phosphorous have an impact on the steel quality (hardness, strength and
toughness). For the steel to be cast, it needs to be at a predefined temperature.
To achieve the predefined temperature and composition, oxygen is blown into a
vessel that contains the liquid iron and that is lined with refractory bricks. The
oxygen oxidizes the elements within the bath causing an increase in temper-
ature and a reduction in concentration of undesirable elements. The formed
liquid oxides float to the top of the bath forming a slag layer. The formed
gaseous oxides such as carbon monoxide and carbon dioxide rise through this
slag layer making it foamy. In certain cases the slag can foam to the extend,
that part of it is thrown over the edge of the converter. This foam overflow is
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called slopping.

1.2 Current situation

Static models are currently used to calculate the amount of raw materials
needed in order to meet quality and temperature demands [4; 5; 6]. Further-
more, set points of control variables such as addition rates and oxygen blowing
rates are currently based on standard operating procedures, which have been
developed during many years of practical experience. The operator only de-
viates from these standard operating procedures when necessary. The most
common reason for deviation from standard operating procedures is the occur-
rence of slopping.

1.3 Recent developments

During the 5th European Oxygen Steelmaking Conference in 2006, many steel
plants have presented the changes they made in the operation of the process
in order to increase their production capacity [7; 8; 9; 10; 11; 12; 13; 14; 15].
This has been achieved by investments in additional or better equipment, by
improving logistics, by decreasing maintenance time, by decreasing refractory
wear and by decreasing batch time by, for instance, increasing the oxygen
blowing rate during the entire batch. They have also shown their ambition to
continue to increase their annual steel production.

Another area that has attracted much attention lately is slopping. Heavy
slopping can be accompanied by large ejections of dust. Due to increasingly
stricter environmental regulations and increasing opposition from neighboring
inhabitants [16; 17; 18; 19] many steel plants have attempted to reduce the
occurrence of slopping.

The demand for an increase in production and a decrease in the occurrence
of slopping seem to be conflicting. While an increase in production can be
achieved by increasing the oxygen blowing rate, the same increase in oxygen
blowing rate increases the gas generation rate inside the vessel. Research in-
dicates, that under steady state conditions, an increase in gas generation rate
increases the foam height and the chance of the occurrence of slopping [20; 21].
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1.4 Thesis objective and scope

The aim of this thesis is to develop a dynamic control strategy for basic oxygen
steelmaking with which the occurrence of slopping can be reduced and the
annual production can be increased. The increase in production can be realized
by decreasing the production time of a single batch.

Other strategies to increase production such as e.g. the purchase of additional
equipment and improvement in logistics are beyond the scope of this thesis.
Other possible additional effects that the change in control strategy may have,
such as the effect on wear of the refractory bricks are also beyond the scope of
this thesis.

1.5 Thesis structure

The development of a dynamic control strategy for basic oxygen steelmaking
would be greatly aided by the continuous measurement of important process
variables, by modeling of system behavior and by dynamic optimization stud-
ies. The feasibility of continuous measurements, the possibility of modeling the
process and optimization of the process are investigated subsequently. This re-
sults in the following thesis structure:

Chapter 2 provides some additional background information regarding the process
and generally used measuring equipment. The steel plant of which data
is used in this thesis is discussed in more detail.

Chapter 3 deals with the feasibility of the continuous measurement of important

process variables such as the composition of the steel, the composition of
the slag, the steel temperature and the foam height. It is shown that due
to the high temperatures and dusty environment involved and due to the
lack of reference measurements most of the the suggested measurements
are currently not feasible. Only the temperature can be estimated using
a linear approximation based on the assumption of a self regulating tem-
perature.
It is however recognized, that for the creation of a dynamic process model
a continuous reference for the steel and slag composition would be help-
ful. The easily measurable decarburization rate and accumulation rate
of oxygen could be used as such references.



Chapter 4

Chapter 5

Chapter 6

Chapter 7

1. INTRODUCTION

describes a slop detection system based on images recorded by a cam-
era viewing the converter mouth. In chapter 3 it is concluded that the
continuous measurement of the foam height is currently infeasible. In
dynamic modeling and control of the process it would be helpful to have
references of the foam height. However, in most steel plants slopping is
neither detected nor recorded. Therefore, a slop detection algorithm is
designed which is both accurate and sensitive and which can be applied
in online applications.

provides some additional background information on the static control
models that are currently in use for the calculation of the necessary raw
material input. The currently used first principle static model is some-
times perceived as complicated. Especially when it needs to be retuned
because of changes in the process. This first principle model is therefore
compared with a Partial Least Squares (PLS) statistical model which
requires less expert knowledge. It is shown that the first principle model
is more accurate than the PLS model. It is therefore concluded that,
if enough expert knowledge is available, the first principle model is pre-
ferred.

describes a dynamic process model for the main blow, that calculates
the steel and slag composition. The model is developed based on the
measured step responses in the decarburization rate and accumulation
rate of oxygen to step changes in the oxygen blowing rate, the lance
height and the addition rate of iron ore. It is shown, that the measured
step responses can be described by a simple model consisting of a carbon
and an iron oxide balance.

describes how the dynamic process model developed in chapter 6 can be
extended, so that it describes the steel and slag composition as well as
the steel temperature during the entire batch. The dynamic model is
validated by comparing it with the measured decarburization rate and
accumulation rate of oxygen. It is shown, that the modeled and measured
decarburization rate and accumulation rate of oxygen correspond well
during the entire batch.

It is furthermore shown, that the accuracy of prediction of the carbon
concentration at the end of the batch is lower than that of the first
principles static model. It is therefore argued, that the dynamic model
should always be used in combination with a static model.
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Chapter 8 describes the extension of the dynamic model described in chapter 7 with
a slop probability model. From observation it is shown that the majority
of slopping batches start to slop when the iron oxide concentration in the
slag is at its maximum level. It is shown, that these slopping batches
can be modeled using a statistical two layer hierarchical model. The first
layer of the model describes the slop sensitive period during the batch,
while the second layer describes the slop probability of the batch. The
resulting slop prediction model is simple using only a small number of
input variables.

Chapter 9 describes dynamic optimization of basic oxygen steelmaking with the goal
to minimize the batch time. In the optimization problem, the dynamic
model described in chapters 6 and 7 is used as the state equations and
the slop probability model described in chapter 8 is used as a constraint.
It is shown, that dynamic optimization results in a bang-bang control
strategy. The optimal control strategy both prevents the occurrence of
slopping and reduces the batch time significantly.

Chapter 10 contains the most important conclusions.
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Background

Several process steps are required to make steel from the raw materials iron
ore and cokes. Basic oxygen steelmaking (BOS), the subject of this thesis, is
an important process step since it removes the majority of unwanted elements
and increases the temperature of the molten steel. This chapter serves as back-
ground information for the remainder of the thesis. It contains a description of
the steelmaking process, a detailed description of the basic oxygen steelmaking
process and a detailed description of the steel plant of which data is used in
this thesis.

2.1 Steelmaking process

Steel is produced from iron ore in several different process steps as is shown in
figure 2.1.

2.1.1 Blast furnace

The first step is the continuous production of hot metal (HM) in the blast
furnace by reducing iron ore with cokes and air. The hot metal is tapped from
the blast furnace periodically. In figure 2.2 a schematic representation of a blast
furnace is shown. When comparing typical compositions and temperatures of
the hot metal and the liquid steel, which are shown in table 2.1, it can be seen
that in additional process steps, the carbon, silicon, manganese, phosphorous



10 2. BACKGROUND

Iron ore Hot Hot Liquid
Cokes . i teel
Blast furnace Frengt;l% Hot metal metal BamT O?clz/.gen stee’
gl pretreatment | £ g5 steelmaking |, 99 507
=7 C4.5% C 0.03-0.1%
Liquid
1 1
S?:;zr::}grg steel Casting Stee! Rolling Stee’
& |Fe99.5%
C 0.003-0.1%

Figure 2.1: The process steps in which steel is produced.

and sulphur concentration have to be reduced and that the temperature has
to be increased.

For a more detailed description of iron making the reader is referred to a book
by Biswas [1].

Table 2.1: Typical composition of hot metal when tapped from the blast fur-
nace and typical demanded steel qualities for basic oxygen steelmaking.

Component | Hot metal Steel

C 1448 [w%] [ 0.035-0.1  [w%]
Si 0.4 [w%] | 0 [w%]
Mn 0.4 [w%] | 0.13 (W]
P 0.06 [w%] | 0.011-0.02 [w%)]
S 0.02-0.04  [w%] | 0.005 [w%]
Temperature | 1300-1460 [C] 1555-1655 [C]

2.1.2 Hot metal pre-treatment

In most steel plants hot metal pre-treatment steps are used to reduce high
concentrations of elements which are difficult to remove, or which can cause
problems in subsequent process steps. The reduction of the high concentration
is often conducted in separate processing units. Depending on plant strategy,
the reduction of high concentrations can be performed in the blast furnace
runner, in the torpedo’s (transportation vessels for the hot metal), in a separate



2.1. STEELMAKING PROCESS 11

Cokes, iron ore
and lime stone

l A7 Waste gas
N/

Alternating
layers of
cokes and
iron ore
Hot air
Tap hole —»Tap hole

hot metal slag

Figure 2.2: Schematic representation of a blast furnace.

converter (dephosphorisation converter) or in secondary steelmaking.

Hot metal pre-treatment can include desiliconisation, dephosphorisation and
desulphurisation and is conducted by adding materials such as iron oxide, lime,
fluorspar and calcium or magnesium based compounds. These materials can
be introduced by either dumping them on the hot metal bath or introducing
them with a carrier gas either through bottom tuyeres or through a lance.

2.1.3 Basic oxygen steelmaking

In basic oxygen steelmaking the majority of unwanted elements are removed
and the temperature is increased. In basic oxygen steelmaking, the hot metal
is tapped into a converter. In the converter oxygen is blown on top of the
hot metal bath in order to oxidize elements in the hot metal, resulting in the
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following reactions:

Due to these exothermic oxidation reactions the carbon concentration (and
other elemental concentrations) reduces and the temperature increases. After
blowing for about 20 minutes (depending on the size and operation of the
converter) the converter is tapped. During tapping, alloying materials can
be added to increase the concentration of certain elements. Typical alloying
materials are ferromanganese, siliconmanganese and ferrosilicon.

A more detailed description of basic oxygen steelmaking can be found in section
2.2 of this thesis and in books by Deo and Boom [2], Oeters [3] and Turkdogan

[4].

2.1.4 Secondary steelmaking

In basic oxygen steelmaking the majority of unwanted elements are removed
and the larger part of temperature increase is achieved. Processing units for
secondary steelmaking can be used to make small adjustments in steel compo-
sition and temperature. The secondary steelmaking methods can be grouped
into stirring processes, injection processes, vacuum processes and heating pro-
cesses. A more extensive review of secondary steelmaking can be found in
books by Boom and Deo [2] and by Stolte [5].

2.1.5 Casting

The liquid steel can be cast into blocks called ingots, alternatively, a more
advanced casting technique, continuous casting, can be used. In figure 2.3 a
schematic representation of a continuous caster is shown. In continuous casting
liquid steel is continuously poured into a bottomless mould and at the same
time a continuous steel casting is extracted. At the end of the continuous
caster the cast steel is cut into pieces. Casting is more extensively described
in books by Schwerdfeger [6] and by Irving [7].
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Figure 2.3: Schematic representation of a continuous caster.

2.1.6 Rolling

Rolling is needed to recrystallize the steel into a much finer grain structure
giving the steel greater toughness and tensile strength. It also reduces the
thickness of the steel plate.

In hot rolling, the steel is first preheated in a furnace in order to change the
crystalline structure and to make it easier to roll. Then the steel is rolled
by passing it between two rolls revolving at the same speed but in opposite
directions.

Some types of steel are also cold rolled after hot rolling, mostly to make the
steel thinner, to increase strength and to give the steel a bright and smooth
surface. In cold rolling the steel is first cleaned with acid. It is then rolled at
low temperatures using oils as a lubricant to reduce friction. After rolling, the
steel can be coated with metals or paints in order to protect the steel surface
or to give it special characteristics. Rolling is more extensively described in
two books by Roberts [8; 9].
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2.2 Detailed description of basic oxygen steelmak-
ing

Basic oxygen steelmaking is an important process step in steelmaking, since it
removes the majority of the unwanted elements and causes a large part of the
necessary temperature increase. Both the process and the equipment used are
described in more detail in this section.

2.2.1 Process description

The change in steel composition and steel temperature is achieved in a reactor
called a converter shown in figure 2.4. The converter is operated in batch
operation. During the batch, oxygen is blown onto the hot metal bath at
supersonic speeds with an oxygen lance. Nitrogen and argon are blown through
tuyeres in the bottom of the converter to improve converter mixing. The
oxygen oxidizes elements within the bath. These oxidation reactions take place
simultaneously or sequentially at a large number of sites including directly
under the oxygen jet, at the interface between slag and bath and at the surface
of iron droplets in the slag formed due to the force of the jet impact [2].

Two types of oxidation reactions can be distinguished. Direct oxidation occurs
through the absorption of oxygen by the bath. This oxygen subsequently reacts
with the other elements present.

302 (0] (2.2)

X +nl0] - X0, (2.3)
In indirect oxidation, oxygen reacts with the iron in the bath and forms iron
oxide. This iron oxide subsequently reacts with the elements within the bath.

1
Fe+ 50z — FeO (2.4)

X +nFeO — XO, +nFe (2.5)

The oxidation reactions are exothermic and increase the temperature of the
metal bath. If nothing is done, the temperature of the metal bath would
increase to more than the demanded temperature. Therefore at the start of
the batch scrap is added to cool the metal bath.
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Figure 2.4: Schematic representation of converter.

The oxides formed through the oxidation reactions float to the top of the metal
bath forming a slag layer. Additions are added at the beginning of the batch
and during the batch in order to reduce wear of the refractory bricks lining
the converter. An important property of the slag, that largely influences how
much the slag erodes the converter lining, is the basicity (B).

~ Weao
Wsio2

B (2.6)

Where Weq,0 and Wg;09 are the calcium oxide and silicium oxide content of
the slag. The lower the basicity, the more the slag will erode the magnesium
oxide bricks that line the converter. Furthermore, if not enough magnesium
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oxide is present in the slag, magnesium oxide from the bricks will dissolve into
the slag causing refractory wear.

The main additions used are dolomitic lime (consists of calcium oxide and mag-
nesium oxide) and lime (consists of mainly calcium oxide). In some plants also
slag (contains calcium oxide, magnesium oxide and silicium oxide) is used as
an addition. Besides the reduction they cause in refractory wear, the additions
also have a cooling effect. Sometimes also iron ore which introduces additional
oxygen into the process is added during the batch as a cooling agent.

Carbon monoxide and carbon dioxide formed due to the oxidation of carbon
leave the converter through the waste gas system. A part of the produced car-
bon monoxide and carbon dioxide flow directly adjacent to the oxygen lance,
another part flows as bubbles through the slag. These bubbles in the slag
cause the slag to foam. In some cases the volume of foam can become so large,
that it is going over the edge of the converter. This undesirable effect is called

slopping.

2.2.2 Measuring equipment

A few measuring devices are in general use in the more advanced steel plants.
These measuring devices, shown in figure 2.5, include the sublance, the sonic
meter or audiometer and equipment to measure waste gas flow, composition
and temperature.

Sublance

The sublance is a long lance containing a cardboard probe which can take
measurements at a desired point during the batch. The sublance probe is used
to take a bath sample which is send to the laboratory for detailed analysis.
The probe also contains a thermocouple with which the bath temperature can
be measured. Often the probe also contains an indirect carbon concentration
measurement.

Sonic meter

The sonic meter or audio meter is a microphone placed in the waste gas system
which measures the sound coming from the converter. The sound spectrum is
generally measured in a range between 5 and 1000 [Hz]. The sonic meter is
generally used to gather information on the height of the foam layer [11; 12].
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Figure 2.5: Measuring devices in primary steelmaking. 1. Sublance, 2. Sonic
meter, 3. Waste gas flow, 4. Waste gas composition, 5. Waste gas temperature.

Waste gas flow, composition and temperature
In the waste gas system the waste gas flow, composition and temperature are
usually measured. These measurements have been used to give information
on the steel carbon concentration [13; 14], the accumulation of oxygen in the
converter [11; 15] and the occurrence of slopping [13].

2.3 Steel plant of which data has been used

The data used in this thesis has been gathered at the OSF2 steel plant in
IJmuiden, The Netherlands. In the OSF2 steel plant in IJmuiden, the annual
production is nearly 7 million tons of liquid steel. Brockhoff et al. [16] give a
short description of the equipment and the operating procedures of the OSF2.
The hot metal coming from the blast furnace is treated in two desulpurisation
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Table 2.2: Average batch in OSF2 IJmuiden, the Netherlands.

OSF2
Hot metal [tons] | 275
Scrap [tons] | 71
Lime [tons] | 7.9
Dolomite [tons] | 4.4
Iron ore [tons] | 3.4
Slag [tons] | 3.7
Oxygen [nm?] | 15300
Temperature HM [C] 1395
C concentration HM (w%] | 4.4
Si concentration HM [w%] |04
Mn concentration HM [w%] |04
P concentration HM [w%] | 0.06
C concentration at end of batch  [w%] | 0.05
Temperature at end of batch [C] 1650

stations. The desulphurised hot metal is transported to three 325 ton con-
verters. Normally all three converters are in operation (a three out of three
practice). Only when one of the converters needs maintenance two out of
three practice is used. The converter cycle time (time between the start of two
subsequent batches) ranges from around 42 [min] in two out of three practice
to 60 [min] in three out of three practice. The oxygen blowing rate in these
converters is about 49500 [”Tm], causing typical batch times of around 20 min-
utes. In table 2.2 the raw material input data of an average batch is shown.
The scrap used consists of a predefined mixture of several separate scrap types.
The scrap types are defined based on the size and the composition of the scrap.
Lime, dolomite, iron ore and slag are added at a certain addition rate following
predefined addition schedules. Lance height, bottom blowing rate and oxygen
blowing rate also follow predefined schedules and they are normally kept con-
stant during the majority of the batch. Secondary steelmaking facilities consist
of a ladle furnace, a vacuum degassing unit and two stirring stations.
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Feasibility of continuous
measurements

It would be valuable if important process variables such as the steel composition,
the slag composition, the steel temperature and the foam height could be mea-
sured continuously during the batch. This would greatly aid the creation and
validation of dynamic process models and the development of a control strategy.
However, the measurement of these variables is, in most cases, currently not
feasible due to the high temperatures and the dusty environment involved and
the lack of available reference measurements.

It is therefore suggested that dynamic process models can best be validated using
the measured decarburization rate and accumulation rate of oxygen.

3.1 Introduction

In basic oxygen steelmaking static models ensure that demands for tempera-
ture and composition are met at the end of the batch [1]. However, variations
in raw material quality and errors in raw material weighing limit the accu-
racy of these static models. If the steel and slag composition and the steel
temperature could be measured continuously, deviations from target could be
spotted at an early stage and could be corrected. Furthermore, static models
do not predict and can thus not prevent slopping, which causes large problems
in converter operation. It would therefore also be valuable if the foam height

21
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could be measured continuously.
In this chapter the feasibility of the continuous measurement of the bath com-
position, slag composition, bath temperature and foam height is investigated.

3.2 Steel composition

Some research has been directed towards the direct continuous measurement
of the steel composition [2; 3; 4]. Although these direct measurements seem
very promising they have so far not successfully been applied in basic oxygen
steelmaking or are only applicable during a limited part of the batch.
Other measurements of the steel composition are based on the decarburization
rate. The decarburization rate % can be calculated from the measured waste
gas composition and flow.
dC _ ¢ug(WGco + WGco2) (3.1)
dt Vi '
In which Vjs is the molar volume, ¢, is the waste gas flow, WGco and
WG ecoo are the volume fraction of carbon mono oxide and carbon dioxide in

waste gas.
In figure 3.1 the measured decarburization rate of a typical batch is shown.
There is a large delay between the moment when process conditions in the

1500

1000

2. Oxidation

Decarburization rate [mol/s]

500 Of C
1. Oxidation of 3. Oxidation
Si, Tiand Fe gf Fe and
00 260 460 . 660 860 10‘00
Time [s]

Figure 3.1: The decarburization rate of a typical batch.

converter change and the time the change is measured with waste gas equip-
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ment. Therefore some researchers have focussed on reducing the delay time by
finding a correlation between the decarburization rate and other measurements
such as waste gas temperature and converter weight [5; 6; 7.

3.2.1 Carbon balance

An often reported inferential carbon concentration measurement uses a carbon
balance in which the carbon leaving the bath is subtracted from the initial
carbon concent [8; 9].

¢

C(t) = Co — / = (3.2)

o dt
In which Cj is the initial carbon content of bath and C(¢) is the carbon content
in the bath. Unfortunately a large error in the calculated carbon concentra-
tion is introduced due to the inaccurate determination of the initial carbon
concentration of the bath.

3.2.2 Carbon relationship

The second of the reported inferential carbon concentration measurements is
based on a relationship between the final carbon concentration and the rate
of carbon removal [8; 9; 10]. This method is only applicable at the end of the
batch, where the low carbon concentration becomes a limiting factor for the
decarburization rate. Disturbances introduced by, amongst others, the sub-
lance measurement, converter additions and lance height and skirt movements
influence the relationship between the carbon concentration and the decar-
burization rate [1]. Generally these disturbances do occur and therefore this
carbon concentration measurement is not feasible.

3.3 Slag composition

The accumulation rate of oxygen inside the converter has been used as an

indication of the slag composition [11]. The accumulation of oxygen % can be
described with an oxygen balance.
dO dOlance dOadditions dOwastegas dOair
— = — — 3.3
a~ dat T dt a it (3:3)
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Where % is the oxygen delivered through the lance, d()“dj% is the oxygen

delivered through additions, do“’;% is the oxygen leaving in waste gasses and

dod—‘;" is the oxygen entering the waste gas system through the inlet of air at
the gap between the converter and the skirt.
In figure 3.2 the accumulation rate of oxygen of a typical batch is shown.
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Figure 3.2: The accumulation of oxygen in the converter.

To calculate the composition of the slag from the total amount of accumulated
oxygen in the converter Dorr et al. [11] made assumptions about the dissolution
rate of additions. They also assumed an average pattern for the oxidation
rate of silicon, manganese and phosphorous. Based on these assumption they
calculated the oxygen that is used to form iron oxide Op,.

t dO
Ore —/ Cdt = (Osi+ Oy + Op) (3.4)
0

Where Og;, Oprn, and Op is the amount of oxygen binding with silicium, man-
ganese and phosphorous respectively. The authors concluded that the mea-
suring errors in waste gas flow and waste gas composition in addition to the
assumptions made, cause a large error in the calculated slag composition, which
renders this slag composition measurement infeasible.
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3.4 Steel temperature

Several direct temperature measurements have been presented in the litera-
ture [12; 13; 14; 15; 16; 17; 18]. Some were conducted through the oxygen
lance [12; 13; 14] and only give a reliable temperature measurement after the
batch has ended. Others were conducted through bottom tuyeres [15; 16; 17]
or through the converter wall [18]. These have either (so far) not been applied
to basic oxygen steelmaking, or they encountered operational problems, that
still have to be solved, such as clogging of the tuyeres. The direct continuous
measurement of temperature is therefore currently not feasible.

Some inferential temperature measurements have also been proposed [19; 20;
21] and will be discussed in this section. A special test was performed to pro-
vide references. In this test, for three batches, the temperature was measured
multiple times during the batch using adapted drop-in sensors.

3.4.1 Energy balance of the converter

In the literature a dynamic energy balance of the converter is often used for
calculation of the bath temperature during the batch [19; 20].

dQsteel . dQ'reactionsconverter _ dQscrap _ andditions . dQslag _ theatloss

dt dt dt dt dt dt
(3.5)
Where % is the change in energy of the steel, dQ;% is the change in
energy of the scrap, dQ““C“"gtS“’"”e”” is the change in energy due to reactions,

anddi ions 3 3 1t dQl
—eadditions jg the change in energy due to additions, —¢

is the energy con-
sumed by the slag and % is the change in energy due to heatloss.

The main difficulty is that some processes, that highly influence the bath tem-
perature, are complex. For instance, the melting of scrap depends on many
factors, such as the size distribution and shape of the scrap, the bath tem-
perature and the mixing of the bath [19; 22] and the dissolution of lime is
influenced by the formation of a dicalcium silicate layer around the lime pel-
lets [23; 24; 25]. With the small number of reference measurements available,
these processes and their influence on the steel temperature can not be modeled
accurately. Therefore, with the small number of reference measurements avail-
able, a temperature measurement based on an energy balance of the converter
is not feasible.
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3.4.2 Energy balance of the waste gas system

An alternative inferential temperature measurement is based on an energy
balance of the waste gas system as is shown in figure 3.3 [21]. Steam from

Energy in waste gas

Energy to
produce steam <¥ ] e —— _> Heat loss

Ens:gzsln Energy in
purg Reactions

o /
air
Energy in
converter gas

Figure 3.3: Energy balance of waste gas system.

purges and the oxygen from the air react with carbon monoxide from the
converter gas generating heat. The waste gas cools down due to heat loss and
due to the production of steam. Using room temperature as a reference and
assuming that the energy contained in purges is negligible, the energy balance
of the waste gas system can be described as:

dt dt dt

_dQsteam _ Qheatloss _ deastegas
dt dt dt

dQWQStegaSSyStem _ Qconve'rtergas + ereactionswastegas (36)

d . . .
Where W is the energy which accumulates in the waste gas sys-

deastegas
dt

tem, is the energy leaving waste gas system in the waste gasses,
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W is the energy entering the waste gas system from the converter

ereactionswastegas dQsteam

gas, yr is the energy released by reactions, =2 is the energy

used for steam production and ‘%% is the energy lost to environment.
Since steam pressure, flow and temperature and waste gas composition, flow
and temperature are measured, the energy contained in the steam and waste
gas can easily be calculated. Using mass and component balances of the waste
gas system, the amount of reaction that takes place and therefore the energy
produced by reactions can also be calculated. To calculate the bath tem-
perature, the accumulation of energy in the waste gas system, the difference
between bath and converter gas temperature and the heat loss have to be
modeled. With the small number of reference measurements available, this
can not be done accurately and therefore a temperature measurement based
on an energy balance of the waste gas system is not feasible.

3.4.3 Linear approximation

The last inferential temperature measurement that will be discussed is based
on the assumption, that the temperature of the bath is (partly) self regulating
as shown in figure 3.4. A higher temperature increases the dissolution rate of
additions and the melting rate of scrap. The higher dissolution and melting
rates will cool the bath and cause a smaller increase in temperature. Based
on the approximation of a self regulating temperature, with a constant oxygen
blowing rate a linear temperature profile can be assumed.

dar

— =arVO2 3.7

k) (3.7)
Where T is the steel temperature, ar is the regression coefficient and VO2 is
the oxygen blowing rate. Due to the charging of scrap the temperature drops
significantly at the start of the batch. The initial condition for calculating the
steel temperature during the batch is therefore:

To = Thm — AT (3.8)

Where Ty is the initial steel temperature, T}, is the measured hot metal tem-
perature and AT is the bath temperature drop due to charging of scrap.

The coefficient a7 in equation 7.1 is chosen in such a way, that the modeled
temperature at the end of the batch corresponds to the estimated temperature
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Figure 3.4: Self regulating mechanism of temperature.

at the end of the batch as calculated using a static process model [1]. The
temperature drop can be estimated by minimizing the difference between the
estimated and measured temperature of the reference batches. In figure 3.5
the estimated temperature of the three reference batches is shown.

3.5 Foam height

The direct foam height measurement reported in the literature is based on
radio wave interferometry [26]. Its successful application is (so far) limited by
operational problems such as skulling (adherence of molten steel to a cooled
surface).

A number of inferential foam height measurements have been proposed [5; 21;
27; 28] and will be discussed in this section. The foam height is only known
when slopping becomes visible at the converter mouth. Only the instances of
slopping can be used as a reference.
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Figure 3.5: Estimated temperature during the batch for the three batches in
which the temperature was measured multiple times.

3.5.1 Intensity of noise

Many researchers have used the relationship between the intensity of the noise

measured by the sonic meter and the foam height to infer the foam height

[5; 27; 28].

In(®g) — In(P)
g

Where h is the foam height, ®( is the magnitude of the sound spectrum of the
noise produced in the converter, ® is the magnitude of the sound spectrum
measured by the sonic meter and [ is the attenuation coefficient. The attenu-
ation coefficient is frequency dependent.

There are, however, some factors that complicate the use of this measuring
method. The source of the noise, for instance, is not known, but it is generally
believed to be noise emitted by the oxygen jet itself, by the eddies generated at
the impingement of the oxygen jet on the steel bath, by gas evolution and by
CO combustion [5]. Different factors such as the oxygen blowing rate and the
lance height affect these sources and thus the sound spectrum of the noise pro-
duced. Moreover, the degree of attenuation depends not only on the height of

h= (3.9)
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the foam layer but also on the physical properties of the foam. Moxon et al.[29]
report that for aqueous foams the attenuation of sound in a foam depends on
the liquid content of the foam, the viscosity of the liquid, the bubble size and
the foams particle loading, which all change during the batch. With the limited
number of reference measurements, the effects of changes in the source of the
noise and changes in the attenuation properties of the slag can not accurately
be modeled. This foam height measurements is therefore infeasible.

3.5.2 Resonance in the noise

Nilles et al. mention that the noise originating from the converter is modified
by the resonance properties of the empty parts of the vessel [5]. Since the
modification depends on the size and shape of the empty parts of the vessel,
the resonance frequencies can be used for the inferential measurement of the
foam height. The converter is connected to the open air through a gap between
the converter and the waste gas system. At a little distance from the sonic
meter the waste gas system bends. A helpful analogy for the converter is a
flute with one hole and a bend as is shown in figure 3.6. Benade [30] has shown,
that -for flutes- some frequencies are reflected at open tone holes. Rostafinski
[31] has shown, that curved ducts also reflect some frequencies. The resonance
frequency depends on the length of the tube in which resonance can occur as

well as the sound velocity.
nv

resonance — ;1 1
/ s (3.10)

Where n =1, 2, 3 .. and in which f,csonance 1S the resonance frequency, v is the
sound velocity (typically 820 ["] for CO gas of 1600 [K]) and L is the length
of tube.

Just before slopping the height of the empty part of the converter suddenly
changes and therefore at that moment a change in resonance frequency should
also be observed. Since flutes and converters are no more than an useful
analogy, it is not known which frequencies are reflected at the gap and at the
bend. If however, most of the sound is reflected at the gap, the height of
the empty part of the column is small and will suddenly approach zero and
the resonance frequency will rapidly increase from >500 [Hz] until it suddenly
disappears during slopping. On the other hand if the sound is not reflected
at the gap, the height of the empty column is very large and the resonance
frequency should be in the range of 20 [Hz] or even lower and it should increase
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Figure 3.6: Analogy of a flute and a converter.

slightly due to slopping.

In the high frequency range (>500 [Hz]) only random noise is recorded and the
microphone used cannot accurately record sound in the low frequency range
(<20 [Hz]). Therefore, the inferential measurement of the foam height based

on resonance frequencies is not feasible.

3.5.3 Heat absorption by the oxygen lance

It has been suggested, that the foam height can be inferred from the measured
increase in temperature of the cooling water of the oxygen lance [21]. The heat
flow to the oxygen lance depends, amongst others, on the foam height. Many
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heat transfer processes, such as radiance from the steel bath, the slag and the
converter wall, convection in the converter and convection in the waste gas sys-
tem occur simultaneously. With the limited number of reference measurements
these processes can not be modeled accurately. The increase in temperature of
the cooling water of the oxygen lance can therefore not be used as an indirect
measurement of the foam height.

3.6 Conclusions

The feasibility of the continuous measurement of process variables such as the
steel composition, the slag composition, the steel temperature and the foam
height is greatly hampered by the high temperatures and dusty environment
involved on one hand and by the lack of reference measurements on the other.
The high temperature and dusty environment have greatly complicated the
application of direct measurements. The harsh conditions cause early break-
down of measuring equipment, making these measuring methods unusable for
multiple batches. The lack of reference measurements limit the amount of re-
lationships that can be modeled in indirect measurements. This causes most
indirect measurements to be infeasible.

Many authors have attempted to develop dynamic process models [20; 32]. To
verify these dynamic models some continuous reference measurements have to
be available. The steel temperature can be approximated using the assump-
tion that the steel temperature increases linearly with the amount of oxygen
blown. The continuous measurement of the steel and slag composition is infea-
sible and can therefore not be used for validation of dynamic models. Although
the decarburization rate and the accumulation rate of oxygen do not give infor-
mation about the compositions themselves, they do contain information about
the change in composition. The decarburization rate and the accumulation rate
of oxygen inside the converter are therefore useful for validation of a dynamic
process model.
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4

Slop detection using a camera

In basic oxygen steelmaking, foam overflow or slopping causes operational and
environmental problems. It would be valuable to know when slopping occurs
especially for modeling and control of the process. However, in the previous
chapter it is shown, that the continuous measurement of the foam height is
currently infeasible. Furthermore, in most steel plants slopping is neither de-
tected nor recorded. In this chapter a slop detection algorithm is presented,
which is based on images taken by a camera viewing the converter mouth. The
proposed algorithm has a sensitivity and specificity of 0.74 and 0.94 respectively,
is relatively simple and can easily be used in on-line applications. When using
this algorithm, slopping is quickly detected and can be halted for the majority
of slopping batches.

4.1 Introduction

Foam overflow, also called slopping, causes operational and environmental
problems in basic oxygen steelmaking. Many different definitions of slopping
exist. In this chapter slopping is defined as ” the continuous overflow of material
over the edge of the converter”. The detection of the occurrence of slopping
using a slop detection system is one of the ways by which slopping can be pre-
vented. There are certain requirements a slop detection system should meet.
A slop detection system should be accurate; it should predict slopping when it
occurs and it should not be detected when nothing occurs. The slop detection

37
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system should be able to work on-line if it is applied in a slop alarm or in an
automatic slop repression system.

Slop detection is a type of binary classification [1]. In binary classification
members of a set of objects are classified into two groups based on whether
they have a certain property or not. This is often represented in a truth table as
is shown in table 4.1. In the columns the classifying property is shown. In this

Table 4.1: Truth table
True (slopping) False (non-slopping)

Positive (detected) True Positive (TP) | False Positive (FP)
Negative (not detected) | False Negative (FN) | True Negative (TN)

case the classifying property is slopping. The column marked True indicates
the slopping batches and the column marked False indicates the non-slopping
batches. In the rows the observation is shown. In this case the observation
is the result of the slop detection system. Positive means, that slopping is
detected, negative means, that slopping is not detected. In table 4.1 the upper
left cell marked True Positive (TP) thus stands for the number of slopping
batches that are correctly detected as slopping and the lower left cell marked
False Negative (FN) stands for the number of slopping batches that are not
detected. Together the True Positive cell and the False Negative cell contain
all the slopping batches. The lower right cell marked True Negative (TN) is
the number of non-slopping batches that are correctly detected and the upper
right cell marked False Positive (FP) are the number of non-slopping batches
that are detected as slopping. Together the True Negative cell and the False
Positive cell contain all the batches that do not slop. To measure the perfor-
mance of binary classification the concepts sensitivity and specificity are often
used [1].

TP
Sensitivity = TP + FN (4.1)
TN
Specificity = ———— 4.2
pecificity TN + 7P (4.2)

The sensitivity represents the proportion of slopping batches that is correctly
recognized, while the specificity represents the proportion of non-slopping batches
that is correctly recognized. Combined the sensitivity and the specificity are a
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measure of the accuracy of the slop detection system. Other interesting prop-
erties that can also be calculated using the truth table are the proportion of
slopping occurrences and the proportion of False Positives (false alarms).

TP + FN
Proportion of slopping occurrences = TP + FN i TN & FP (4.3)
Proportion of False Positi P (4.4)
oportion of False Positives = ———— :
roportion itiv TP L TP

Much research has focussed on the detection of slopping using measurements
such as a sonic meter [2; 3; 4], vibrations of the oxygen lance or the converter
[4; 5; 6; 7], waste gas measurements [8; 9; 10] and waste gas temperature
[11; 12]. In these slop detection algorithms slopping is either detected when a
certain boundary value is crossed or if the measured pattern deviates too much
from the ’average’ or ’expected’ pattern. Unfortunately, the interdependency
between these measurements and the foam height is influenced by changing and
unmeasured variables such as the physical properties of the slag. Therefore,
the accuracy of these algorithms is often limited.

Alternatively, slopping can also be detected using direct observations with, for
instance, a camera. Some authors have developed a slop detection algorithm
based on images from camera’s viewing the tap-hole [13; 14; 15]. The position
of these cameras may present some problems in maintenance. In this chapter a
slop detection algorithm is presented, which is based on camera images taken
with a camera viewing the converter mouth. The distance of the camera from
the converter is more than ten meters. Due to the distance of the camera from
the tap hole the required maintenance is minimal.

Gonzales and Woods [16] describe the different steps needed in digital image
processing. First images have to be acquired. Then the prior knowledge gained
by observing the acquired images has to be described in the knowledge base.
Finally the detection algorithm can be constructed based on the knowledge
base.

In the first two sections image acquisition and the knowledge base are discussed.
In the third section a slop detection algorithm for separate images is developed.
In the following section this algorithm is extended for movies. In the last
two sections the results are discussed and compared to the literature and the
conclusions are summarized.
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4.2 Image acquisition

In figure 4.1 the experimental set-up is shown. A Basler A602 FC CMOS

. Movable
Slopping Skirt
Converter '/
mouth -
CMOS
camera
F—— Screen

Image processing
Steel (Lab View)
and Image storage

Figure 4.1: Experimental set-up.

camera is aimed at the gap between the lower part of the skirt and the upper
part of a protective screen. From this position the camera has a clear view of
the converter mouth. The position of the protective screen and the converter
mouth are fixed, but the skirt height can vary. In the acquired image, shown
in figure 4.2, part of the protective screen and part of the skirt are visible.
The images are acquired and recorded at a rate of 2,5 frames per second with
software designed in LabVIEW, using a shutterspeed of 5[ms] and a resolution
of 480x640. During a plant trial the images of 230 batches were recorded.

4.3 Knowledge base

Images can consist of several different colored parts. In figure 4.2 for instance
the majority of the colored part of the image can be seen under the line named
”converter mouth”. Unattached from this part also small red dots are present
which are barely visible. These separate parts are called objects in this chapter.
From observations it is known that images recorded by the camera can be
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Figure 4.2: Example image (slopping).

subdivided in three distinct categories, namely inactive, fiery and slopping
images. These images can be disturbed by phenomena such as over-exposure
(large oval red objects, which are visible in several subsequent images in a
movie) or sparks (small orange dots which are only visible during a limited
time).

In inactive images hardly any converter activity can be seen. These images
typically occur at the beginning and the end of the batch. Inactive images
have thin horizontally positioned yellow and orange objects placed just above
the converter mouth, which are visible in several subsequent images.

In fiery images quickly changing flame patterns can be seen. These images
typically occur during the middle of the batch. Fiery images have yellow and
orange objects which can take any shape and size, but which are usually large.
These objects can be visible throughout the entire image, also in front of the
protective screen and the skirt. Flames can appear suddenly and be visible in
only a few subsequent images, or flames can be visible for a while in several
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subsequent images in a movie.

In slopping images it can be seen, that part of the slag is dripping or pouring
over the edge of the converter. These images can typically be seen during the
middle of the batch (of which the majority occur around one third of the batch
time). Slopping images have yellow and orange objects positioned vertically
just above the protective screen. These objects are usually visible in several
subsequent images in a movie.

4.4 Slop detection algorithm for separate images

In the knowledge base, described in the previous section, there are some differ-
ences in the description of the color, size and position of objects in an image.
These differences can be used to attribute the images to the different categories
and to remove disturbing phenomena from the image.

In the knowledge base most categories are described to have a yellow or orange
color. Only over-exposures are described as red. Whether this color informa-
tion can be used as a distinguishing property can be investigated by comparing
the hue, saturation and intensity of samples of different images in the HSI (Hue
Saturation Intensity) color space or by comparing red, green and blue values
in the RGB (Red Green Blue) color space. Over-exposures have distinctly dif-
ferent blue color values. Typical histograms of the blue color plane of slopping
images and overexposures are shown in figure 4.3.

In the knowledge base sparks are the only objects that are described as being
small. Sparks can therefore clearly be distinguished from the other image ob-
jects by their size.

In the knowledge base it is described, that only slopping and fiery images can
have objects with a position just above the upper edge of the protective screen.
It is also described that while slopping images hardly ever have objects above
the converter mouth, fiery images often have objects that can be visible in the
entire image and thus also above the converter mouth. Therefore, if objects
are visible just above the protective screen but not high above the converter
mouth, the image is most likely a slopping image.

Properties such as the different blue color value for overexposed images, the
different size of sparks and the different position of objects in slopping images,
can be used to construct a slop detection algorithm, as shown in figure 4.4. If
the image is thresholded in the blue image plane, a black and white image is
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Figure 4.3: Typical histogram of blue image plane of a slopping image and an
over-exposed image.

created from which over-exposures are removed. If then small objects are omit-
ted, sparks are also removed from the black and white image. The position of
the white objects can be used to detect the slopping images. In the proposed
algorithm two parameters can be adjusted, namely the value of the threshold
and the maximum size of the objects that are excluded. The calculation of
sensitivity and specificity are based on a test set of 840 non-slopping and 1040
slopping images. In figure 4.5 the sensitivity and the specificity are shown for
a range of thresholds and excluded sizes. The threshold and excluded sizes are
represented by a relative value defined as the threshold divided by the finally
selected threshold and the excluded size divided by the finally selected excluded
size. The threshold and the excluded size were selected in such a way that that
the algorithm has both a high sensitivity and a high specificity. At the finally
selected threshold (represented by 1 in figure 4.5a) the sensitivity is 0.72. With
a threshold twice as large (represented by 2 in figure 4.5a) the sensitivity is
only 0.5. The value of the finally selected threshold and the finally selected
excluded size was chosen in such a way that the specificity of the slop detection
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Figure 4.4: Slop detection algorithm.

system is high. The sensitivity and the specificity on separate images for the
finally selected threshold and excluded size is 0.72 and 0.97 respectively. The
result of application of the algorithm for separate images is shown in table 4.2.
In this table the column marked True contains all the 1040 slopping images.
Of the 1040 slopping images 749 were detected as slopping and and 291 were
detected as non-slopping. The column marked False contains all the 840 non-
slopping images. Of the 840 non-slopping images 25 were detected as slopping
and 815 were detected as non-slopping.
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Figure 4.5: Sensitivity and specificity of the algorithm for different thresholds
and excluded sizes.

Table 4.2: Results of slop detection algorithm for separate images.
True (slopping) | False (non-slopping)
Positive (slopping detected) 749 25

Negative (slopping not detected) | 291 815

4.5 Extension of algorithm for movies

In the knowledge base it is described, that when slopping occurs it lasts for a
while and is thus visible in several subsequent images of a movie. This knowl-
edge can be incorporated in the slop detection algorithm by using a ”dynamic
window” of several subsequent images. In this case a dynamic window of three
seconds or 8 images was chosen. If inside this dynamic window half or more
of the separate images is detected as slopping it is fairly certain that slopping
is indeed occurring. Slopping can occur multiple times during a batch and
is only correctly detected if it is detected within five seconds of the occur-
rence. Non-slopping is only correctly detected if the entire batch is detected
as non-slopping. Calculation of sensitivity and specificity are based on 132
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non-slopping batches and on 143 instances of slopping which occurred in 98
batches. The sensitivity and specificity of the algorithm is 0.73 and 0.94 re-
spectively. The result of application of the slop detection algorithm for movies
is shown in table 4.3.

In this table the column marked True contains all the 143 slopping instances.
Of the 143 slopping instances 104 were detected as slopping and 39 were de-

Table 4.3: Results of slop detection algorithm for movies

True (slopping) | False (non-slopping)
Positive (slopping detected) 104 8

Negative (slopping not detected) | 39 124

tected as non-slopping. The column marked False contains all the 132 non-
slopping batches. Of the 132 non-slopping batches 8 were detected as slopping
and 124 were detected as non-slopping. The proportion of slopping occurrences
is 0.52 and the proportion of False Positives (or false alarms) is 0.07.

4.6 Discussion

In slop detection algorithms a trade-off has to be made between the sensitivity
and the specificity of the system. A higher sensitivity can be achieved at the
cost of a lower specificity and vice versa. In the described slop detection algo-
rithm, based on the images taken by a camera viewing the converter mouth,
the sensitivity and specificity are 0.73 and 0.94 respectively. The choice of a
high specificity was intentional, because the specificity highly influences the
confidence in and the usability of the algorithm. If the specificity of a slopping
alarm is low, it would often go off when nothing is happening (false alarm or
False Positive). Usually little attention will be paid to such an alarm. Coun-
teractive measures could be taken automatically in a slop repression system
based on the prediction of slopping by the slop detection algorithm. In that
case a high specificity will ensure that these actions are not taken unnecessar-
ily. This is important since counteractive measures can be costly, as is the case
with anti-foaming agents. Counteractive measures may also increase produc-
tion time, as is the case with a decrease in oxygen blowing rate.

Of the slop recognition algorithms described in the literature often important
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indicators of the quality of the slop detection algorithm, such as its sensitivity
and specificity, are not mentioned. To our knowledge the specificity of the
slop detection algorithms described in the literature is never mentioned. In
the literature the sensitivity of the algorithms is sometimes mentioned and it
ranges between 0.67 and 0.92 [3; 4; 5; 9], or it is described by the reduction
of the occurrence of slopping achieved when the algorithm is applied, which
ranges from 50% to 95% [2; 6; 7; 13; 14; 15]. The sensitivity of our proposed
slop detection algorithm is 0.73. Although the sensitivity of the proposed algo-
rithm is within the range mentioned in the literature, it can strictly speaking
not be compared to the sensitivity of these algorithms, because the specificity
of the algorithms mentioned in the literature is not reported and an algorithm
is always a compromise between sensitivity and specificity.

4.7 Conclusions

A slop detection algorithm was designed based on images taken by a camera
viewing the converter mouth. The algorithm consists of thresholding the blue
image plane, removing small objects and assessing the position of the remain-
ing objects in the image. This algorithm is relatively simple and can thus easily
be used in on-line applications.

In a large collective, of the 143 occurrences of slopping 73% were detected
within 5 seconds of occurring and of the 132 non-slopping batches 94% were
correctly detected as non-slopping.

If the slop detection algorithm was used in a slop repression system, it would
quickly detect and stop slopping in the majority of the slopping batches. It
would also ensure that slop repression measures are hardly ever taken unnec-
essarily and it thereby ensures, that no unnecessary costs are made or that
production time is not unnecessarily increased.
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Static models for calculation
of raw material input

In basic oxygen steelmaking static models are used to calculate the necessary
raw material input. The first principles model that is currently used in the
steel plant of which data is available is sometimes perceived as complicated,
especially in cases where the model needs to be retuned. An example of when
difficulties could arise is when the first principles model is installed in several
different steel plants. For each different steel plant model parameters may need
to be changed. Ezpert knowledge is required to identify which (combination of)
model parameters need to be changed.

Retuning of statistical models requires less expert knowledge and a statistical
model could, therefore, be a good alternative. Since the input data is highly
correlated, the statistical model was constructed using Partial Least Squares.
The standard deviation in the prediction of the carbon concentration and steel
temperature is higher for the PLS model than for the first principles model. It
was therefore concluded, that a PLS model is not a good alternative to replace
the first principles model.

o1
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5.1 Introduction

The composition of liquid steel largely influences the strength, hardness and
toughness of the finished product and for steel to be cast it needs to be at
a predefined temperature. Therefore, most steel plants use static models to
calculate the amount of raw material that needs to be charged in order to meet
the composition and temperature requirements [1; 2; 3; 4; 5; 6; 7; 8; 9; 10].
The accuracy of prediction of these static models does not only depend on
model accuracy but also on the accuracy of measurements of, amongst others,
raw material input weight, temperature and composition [11]. The accuracy of
prediction of the models presented in the literature can thus not be compared.
The first principles static model [12] that is currently used in the steelplant of
which data is available, is sometimes perceived as complicated. Especially in
cases where the model needs to be retuned because of changes in the process
such as the use of a different lance height or addition pattern. Another example
of retuning that may cause problems is when the first principles model is in-
stalled in several different steel plants. Retuning of statistical models requires
less expert knowledge. In this chapter it is therefore investigated whether a sta-
tistical model is a good alternative if insufficient expert knowledge is present.
The raw material input data is highly correlated. Partial Least Squares (PLS)
is a statistical technique that can cope with highly correlated input data. This
technique will be used to construct the statistical model.

In the first section the theory on first principles static models is discussed. In
the following section the theory on PLS models is discussed and a PLS model is
constructed. In the last two sections the results are shown and the conclusions
are drawn.

5.2 First principles model

The end of batch steel temperature and steel composition are often controlled
with first principles static models, which calculate the required raw material
input. In the literature these models are usually presented the other way
around, thus with the raw material input data as input of the model and the
steel composition and temperature as outputs of the model, as is shown in figure
5.1. Although many different variations of such first principles models exist, the
general framework consists of an oxygen and an energy balance [1; 2; 3; 4; 5; 6].
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Figure 5.1: Input output diagram of static model for basic oxygen steelmaking.

In the oxygen balance the majority of the oxygen is supplied by the oxygen
lance and the remainder of the oxygen is supplied by additions. The supplied
oxygen is consumed by reactions, mainly by the oxidation of carbon and the
oxidation of silicon.

Olance + Oadditions = Oreactionsconverter (51)

In which Ojgpnee is the oxygen supplied by the lance, Ogqgitions 1S the oxygen
supplied by additions and Oreactionscanverter is the oxygen consumed by the
reactions occurring in the converter.

In the energy balance the energy supplied by reactions is used to increase the
temperature of the steel and the slag and to dissolve the scrap and additions.
Also a portion of the heat is lost to the environment.

Qreactionsconve’rter = Qsteel + Qslag + Qscrap + Qadditions + Qheatloss (52)

In which Q. eactionsconverter 1S the energy supplied by reactions in the converter,
Qsteer is energy consumed by the steel, Qa4 is the energy consumed by the
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slag, Qscrap is the energy consumed by the scrap, Qudditions is the energy con-
sumed by the additions and Qpeatioss 1S the energy lost to the environment.
Turkdogan [6] describes the energy balance for a specific batch in a 220 ton
converter, as is shown in table 5.1. Although the amount and composition of
each of the raw materials used varies from steel plant to steel plant and from
batch to batch, the distribution of energy between the various terms in the
energy balance can serve as an example.

Table 5.1: Energy balance of an example batch as given by Turkdogan. [6]
Heat generated by reactions

C 58%
Si 25%
Fe 12%
Mn 3%
P 2%
Heat consumed

Scrap 43%
Hot metal 27%
Heat loss 20%
Additions 10%

In the first principles models often also an iron balance and a slag balance are
used to ensure that the required steel weight is met and the composition of
the slag does not cause damage to the refractory bricks. Additionally a few as-
sumptions are necessary to be able to calculate the oxygen and energy balance.
Assumptions need to be made for the amount of heat loss, the amount of iron
that reacts to iron oxide, the amount of carbon that reacts to carbon dioxide
and the amount of manganese oxide and phosphorous oxide formed [1; 2; 3].
The model balances are usually supplemented with empirical relationships to
account for these assumptions [4; 5].

In the first principles model, adaptation is used to cope with small drifts in
time, such as a gradually changing lime composition [1; 3; 4]. In most cases
an error term in the oxygen and heat balance is adapted. Other changes in
the process, such as the use of a different lance height or addition pattern
may require retuning of the model. In that case model parameters in the bal-
ances or in the empirical relations may need to be changed. Expert knowledge
is required to identify which (combination of) model parameters need to be
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changed.

Often the steel plant uses a sublance measurement to measure the steel tem-
perature and carbon concentration at a certain point during the batch. In that
case (an adapted version of) the static model is used to calculate the end of
batch carbon concentration and steel temperature, using these measurements
as additional inputs [7; 8; 9].

5.3 Partial Least Squares model

Partial Least Squares is a statistical technique that can cope with highly cor-
related data. The key behind this technique and other related techniques is
the use of projection to examine and model high-dimensional data in a low
dimensional ”Latent Variable” (LV) subspace that describes most of the vari-
ability in the data. Roderigues et al. give a comprehensive explanation of
these techniques [13]. Their overview will be closely followed in this chapter.
Principal Component Analysis (PCA) is a simplified form of PLS. It can be
used to describe the variation amongst a block of variables such as, for in-
stance, the input variables. In figure 5.2 several data points are plotted in a
three dimensional space. Most of the variation lies along a line which is not
necessarily parallel to any of the variable axes. This line, the first Principal
Component (PC), passes through the average of the points and is chosen such
that the projections of the points onto the line minimize their distances to the
data in the least squares sense. The second Principal Component is the line
that passes through the average and minimizes the projection distances in a
direction that is orthogonal to the first Principal Component.

In matrix notation PCA is described as follows [14]:

X=TPT+E (5.3)

Where X is the data matrix, T is the scores matrix, P is the loadings matrix
and E is the residual error.

A loading plot can be used to relate the Principal Components back to the
original variables. Original variables are positively correlated if they are near
each other in the loading plot and negatively correlated if they are in opposing
quadrants of the loading plot. A scores plot can be used to show the relation-
ship between samples.

A PCA model was constructed for a collective of 4085 batches containing the
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Figure 5.2: Concept of PCA analysis.

raw material input data and the measured steel carbon concentration and steel
temperature. The data was autoscaled. In autoscaling, for each data point the
mean is subtracted and the datapoint is divided by the standard deviation.
Outliers were removed. The 21 input variables were reduced to only 3 Prin-
cipal Components. The number of Principal Components was selected based
both on the ratio of successive eigenvalues as well as the minimum in the root-
mean-square error of the cross-validation [15]. The variance explained by these
three Principal components is approximately 47%.

In figure 5.3 the loading plots of the three Principal Components of the PCA
model and the scores plot for the first and second Principal Component are
shown. In this figure Wiepqpe is the total amount of scrap charged, Wicrapt, ---,
Wseraps are the amount of the specific scrap types charged, Wy, is the amount
of hot metal charged, W,,. is the amount of iron ore charged, Wj;,. is the
amount of lime charged, Wy, is the amount of slag charged, Wyoiomite is the
amount of dolomite charged, Th,, is the hot metal temperature, Chp,, Stipm,
Tipm, Mnp., and Py, are the hot metal carbon, silicon, titanium, manganese
and phosphorous concentrations, C; is the steel carbon concentration and Ty
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Figure 5.3: Loading plot and scores plot.

is the steel temperature.

In the three loading plots in figure 5.3 it can be seen, that the hot metal temper-
ature (Th,) and the hot metal carbon concentration (Cp,,) are situated near
each other and that they are therefore positively correlated. This correlation
can be explained physically since the hot metal is saturated with carbon and
the saturation carbon concentration depends on the hot metal temperature.
However, correlations found need not have an underlying physical cause.

In figure 5.3 the amount of hot metal charged (W},,,) and the amount of scrap
charged (Wierapt), for instance, are at opposite quadrants in the loading plots.
This implies that these variables are negatively correlated. The negative cor-
relation between the amount of hot metal charged and the amount of scrap
charged can be explained by the fact that the steel plant produces roughly the
same amount of steel for each batch. Thus, if a smaller amount of hot metal
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is used, the reduced iron input needs to be compensated by an increase in the
amount of scrap charged.

It can also be seen in figure 5.3, that the hot metal silicon content (Sip,,) and
the amount lime and dolomite charged (Wiime, Waolomite) are positioned near
each other. This implies that these variables are positively correlated. This
positive correlation can be explained by the aim to have a certain slag basicity
to prevent erosion of the converter lining. If the hot metal silicium content
is higher, more lime and/or dolomite need to be charged to reach the same
basicity.

In figure 5.3, the model outputs, the steel carbon concentration (Cy) and the
steel temperature (T) are also shown. The steel carbon concentration is lo-
cated near the origin in the three loading plots. The steel temperature is also
located near the origin in the loading plot for the first and the second Principal
Component. This may indicate, that there is little correlation between the steel
carbon concentration and the input variables and between the steel tempera-
ture and the input variables. This may cause some problems when predicting
the steel carbon concentration and steel temperature from the input variables
using a statistical model. It may be, that important process variables that
influence the steel temperature and carbon concentration are not measured.
In the scores plot in figure 5.3 two different clusters of samples can be seen.
The two clusters are formed due to a difference in the demanded steel temper-
ature. The partition in clusters suggests, that two separate statistical models
are necessary to predict the steel carbon concentration and steel temperature.

Partial Least Squares (PLS) is a method for predicting Y variables from X
variables when variables are correlated [13]. Like PCA, PLS extracts latent
factors that are functions of all the variables, but PLS extends PCA by ex-
tracting factors from both X and Y. The latent X factors are selected with the
goal of explaining both X and Y variables. Both X and Y are modeled with
so-called outer relationships:

X=TPT+E (5.4)

Y =UQ" +F (5.5)

An the relationship between X and Y is modeled through the so-called inner
relationship:

U = BT (5.6)
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Where X is the data matrix of the input variables, Y is the data matrix of the
output variables, T and U are the scores matrices, P and Q are the loadings
matrices, E and F are the residual error and B is the regression matrix.

A collective of 4085 batches was divided into two separate data sets based on
the clusters in the PCA model. For both data sets a PLS model was con-
structed that uses the charged amount of hot metal, scrap, iron ore, slag, lime
and dolomite, the hot metal temperature and the hot metal carbon, silicon,
titanium, manganese and phosphorous concentration as inputs and the tem-
perature and carbon concentration measured by the sublance as outputs. The
data was auto scaled, outliers were removed. The number of Latent Variables
was selected based on the root-mean-square error of the cross-validation [15].
For both models the 21 input variables were reduced to 7 Latent Variables.
The regression coefficients of the PLS models are shown in table 5.2.

Table 5.2: Values of the regression coefficients of the PLS models. If value is
between -0.2 and 0.2 it is omitted.

Variable | T model 1 | T model 2 | C model 1 | C model 2
Werapt -0.30 -0.44

Wscrap4 0.26

Whim 0.24 0.32
Thm 0.20 0.24

Chm 0.20

Sthm 0.32 0.24

Wiime -0.22

Wore -0.23 -0.35 -0.26
Welag -0.22 -0.24

Wdolomite 0.24
Ozxygen | 0.32 0.34 -0.56 -0.42

Only those regression coefficients are shown for which the value is higher than
0.2 or lower than -0.2.

Although, the relationships between the inputs and the outputs of the PLS
models need not be causal, it would be of interest to see whether these re-
lationships can be explained physically and whether they are similar to the
relationships in first principles static models.

The steel temperature depends on the energy balance described in equation
5.2. In table 5.1 it can be seen, that the majority of the energy is generated
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by the oxidation of carbon and silicon. This explains the positive influence of
the hot metal carbon and silicon concentration and the amount of oxygen on
the steel temperature in the PLS models. In table 5.1 it can be seen, that the
energy is consumed by the scrap, the hot metal and additions. This explains
the negative influence of the amount of scrap, iron ore, lime and slag on the
steel temperature in the PLS models. The heat inside the converter at the
start of the batch depends on the amount of hot metal charged and the hot
metal temperature. The higher the initial heat, the higher the steel tempera-
ture. This explains the positive influence of the hot metal temperature on the
steel temperature in the PLS models.

The steel carbon concentration depends on the oxygen balance described in
equation 5.1. Part of the oxygen is consumed by the oxidation of carbon. If
more oxygen is supplied then more carbon can oxidize and the steel carbon
concentration will be lower. This explains the negative influence of oxygen
and the oxygen supplying iron ore on the carbon concentration in the PLS
models. If more hot metal is added, the carbon content of the converter at
the start of the batch is higher. This explains the positive influence of the hot
metal weight on the steel carbon concentration in the PLS models. The other
relationships with the steel carbon concentration in the PLS model are more
difficult to explain.

5.4 Results

The measured and predicted carbon concentration and steel temperature at
the sublance measurement for both PLS models are shown in figure 5.4. The
standard deviation of the first principles model was reported by Snoeijer et
al. [12]. The standard deviation of the PLS models was calculated for the
validation sets of both PLS models combined. The standard deviation of the
first principles model and the PLS models are shown in table 5.3. The first

Table 5.3: Standard deviation of prediction of temperature and carbon con-
centration of first principles and PLS static models.

First principle model | PLS models
Temperature [K] 11.6-11.7 13.4

Carbon concentration [.1073w%)] | 52-62 88.0
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Figure 5.4: Accuracy of prediction.

principles and the PLS models were constructed based on data from the same
steel plant. However, a different dataset was used to construct the models.
This may have a slight influence on the calculated standard deviation.

5.5 Discussion

The difference in the standard deviation of prediction of the carbon concentra-
tion and the steel temperature between the first principles model and the PLS
models is quite remarkable. It would be interesting to investigate why the PLS
models may have a high standard deviation.

The PLS models are linear models. It may be the case that the assumption
that the outputs can be predicted using a linear model is not valid. To in-
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vestigate this, T and U in equation 5.6 can be plotted. If the data points in
such a plot can be described using a linear equation, linearity may be assumed.
Linearity is investigated in figure 5.5 for ¢; and w; for both PLS models. It
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Figure 5.5: Correctness of assumption of linearity.

can be seen, that although the data points in both plots could be described
using a linear equation, the data points form clouds and they could also be de-
scribed using equations that are not linear. The assumption, that the outputs
can be described using a linear model may therefore not be valid, but it is not
immediately clear whether a non-linear fit would improve the model.

In the PCA model it was shown that the steel carbon concentration and the
steel temperature are located near the origin in the loading plots. This may
indicate, that there is little correlation between the steel carbon concentra-
tion and the input variables and between the steel temperature and the input
variables. It may be that important process variables that influence the steel
temperature and carbon concentration are not measured and that they are,
therefore, not used as inputs in the PLS models. In the first principle model
empirical relationships are used to estimate, for instance, the amount of heat
loss, the amount of iron that reacts to iron oxide, the amount of carbon that
reacts to carbon dioxide and the amount of manganese oxide and phosphorous
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oxide formed. These estimated process variables are not measured and are
therefore not used in the PLS models.

5.6 Conclusions

In this chapter it was investigated whether a statistical model would be a good
alternative for the currently used first principles model. The first principles
model is sometimes perceived as complicated, especially in cases when the
model needs to be retuned. Retuning of a statistical model requires less expert
knowledge.

Using Principal Component Analysis it was shown, that the input data is highly
correlated. In the scores plot of the PCA model it could be seen, that the data
can be separated in two different clusters. The two clusters are formed due to
a difference in further treatment. The partition in clusters suggests, that two
separate statistical models are necessary to predict steel carbon concentration
and steel temperature.

Because the input data is highly correlated Partial Least Squares was selected
to calculate the two statistical models. It was shown, that the input variables
have a similar influence on the steel carbon concentration and steel temperature
in the first principles model and in the PLS models. It was also shown, that
the standard deviation in the prediction of the carbon concentration and steel
temperature is higher for the PLS models, than for the first principles model.
This may be due to the fact that PLS models assume that the outputs can
be described using linear equations. It was shown, that the assumption of
linearity may not be valid. Another cause for the higher standard deviation of
the PLS models may be that important process variables, such as for instance
the amount of heatloss, that are estimated in the first principles model are not
used as inputs in the PLS models since they are not measured.

Because of the higher standard deviation, the PLS models are not a good
alternative for the first principles model.
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6

Dynamic model for the main
blow

In the control and optimization of basic oxygen steelmaking it is important
to have an understanding of the influence of control variables on the process.
Howewver, important process variables such as the composition of the steel and
slag can not be measured continuously. The decarburization rate and the ac-
cumulation rate of oxygen, which can be derived from the gemerally measured
waste gas flow and composition, are an indication of changes in steel and slag
composition. The influence of the control variables on the decarburization rate
and the accumulation rate of oxygen can best be determined in the main blow
period.

In this chapter the measured step responses of the decarburization rate and
the accumulation rate of oxygen to step changes in oxygen blowing rate, lance
height and the addition rate of iron ore during the main blow are presented.
These measured step responses are subsequently used to develop a dynamic
model for the main blow. The model consists of an iron oxide and a carbon
balance and an additional equation describing the influence of the lance height
and the oxygen blowing rate on the amount of iron droplet formed due to the
impact of the oxygen jet. With this simple dynamic model the measured step
responses can be explained satisfactorily.
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6.1 Introduction

To improve control of basic oxygen steelmaking and to enable dynamic op-
timization, the process should be modeled dynamically. To develop a dy-
namic model, the influence of changes in control variables, such as the lance
height, the oxygen blowing rate and the addition rates on the process should
be known. How the behavior of the process changes with time under the influ-
ence of changes in control variables can be investigated using an experimental
approach [1; 2]. In this approach the value of control variables is deliberately
changed. One possibility is to change the control variables by making a step
change and monitor the process variable response.

In the literature little information is published on step responses in basic oxy-
gen steelmaking [3; 4; 5; 6]. It is however known, that an increase in oxygen
input, either due to an increase in oxygen blowing rate [3; 4; 5] or due to the
addition of ore [5], increases the decarburization rate. Furthermore, Anderson
et al. [6] published the delay between the occurrence of a change in a control
variable such as the iron ore addition rate and a change in decarburization
rate.

In this chapter the step response to changes in control variables is determined
experimentally in the first section. Using the measured step responses a simpli-
fied process model is developed in the following section. In the next section the
measured and simulated step responses are compared. Finally the conclusions
are summarized.

6.2 Experimental

Due to the high temperatures and dusty environment involved in basic oxygen
steelmaking, important process variables such as the steel composition and steel
temperature can not be measured continuously. Therefore in most steelplants
indirect measurements, such as waste gas flow, temperature and composition,
are used to monitor the process. The decarburization rate and the accumu-
lation rate of oxygen inside the converter, which are commonly derived from
the waste gas measurements, can be used as an indication of the change in
composition of the steel and the slag respectively [7; 8]. The decarburization
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ac : .
rate ;- can be given by:

dC _ ¢uy(WGco + WGco2) (6.1)
dt Vi '

Where ¢4 is the measured waste gas flow, WGco and WGco2 are the mea-
sured percentage of carbon monoxide and carbon dioxide in the waste gasses

and Vjs is the molar volume. The measured accumulation rate of oxygen inside

the converter % can be given by:

dO _ dOlance + dOadditions _ (dowastegas _ doair

dt - dt dt dt dt ) (6.2)

Where % is the measured rate at which oxygen is blown into the con-

verter, % is the measured rate in which oxygen in additions enters the
dowastegas

converter, —*4<4= is the measured rate at which oxygen leaves the converter
through the waste gasses and d%—‘;” is the measured rate at which air enters

the waste gas system through the gap between the converter and the skirt.

It is important that a measured step response accurately describes the influ-
ence of the change in a control variable. This is easiest during a period in
the batch in which the decarburization rate and accumulation rate of oxygen
remain constant, when no changes in control variables occur. Boom and Deo
[3] describe this period as the main blow period.

The step changes occurring during normal operation in a data set of 1006
batches were studied. The step changes in oxygen blowing rate, lance height
and the addition rate of iron ore during main blow were determined. The num-
ber of observations found of a particular step change depends on the time for
which that step change is well defined. For example, if this time is 50 [s], then
the number of observed step changes in the oxygen blowing rate is 11. If the
time is increased to 60 [s] then the number of observations reduces to only 5.
For each type of step change the time for which this step change is well defined
is selected in such a way, that the number of observations exceeds ten. Details
of the step changes, such as the selected time, the number of observations and
the average step size are shown in table 6.1.

To minimize the influence of disturbances on the step response, the step re-
sponse of several different observations of a step change were averaged. Normal-
ization of the step response to zero starting conditions will make this possible.
It is assumed that for the result to be meaningful at least ten observations
of a particular step change should be averaged. The average normalized step
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Table 6.1: Steps found in data set

Independent step | Duration step | Observations | Average size of step
O2 rate increase | 50 [s] 11 2500 [nm3/h]
Lance up 90 [s] 43 7 [cm]

Lance down 60 [s] 14 7 [cm]

Ore start 120 [s] 247 8 [kg/s]

Ore stop 90 [s] 48 8 [kg/s]

responses of the step change in oxygen blowing rate, lance height and the ad-
dition rate of iron ore on the decarburization rate and accumulation rate of
oxygen are shown in figure 6.1. A decrease in oxygen blowing rate is not shown
in this figure, since not enough well defined steps of this type were present in
the available data set.

6.3 Process model

The measured step responses can be simulated using a process model. In basic
oxygen steelmaking, reactions can take place at a number of sites including
the slag foam where reactions take place between the iron droplets and the
oxidizing slag and the hot spot directly under the oxygen jet [3].

Meyer et al. [9] have analyzed ejections of slag and metal emulsions from the
tap hole. They have shown that a substantial portion of the liquid metal is
emulsified into the slag during the batch. The authors concluded, that at the
height of refining most decarburization occurs within the slag-metal emulsion.
It is therefore assumed that the majority of reaction takes place at the interface
between the iron droplets and the slag. Decarburization at the iron droplets
in the slag occurs through a reaction with iron oxide.

Fe + %OQ — FeO (6.3)

C+ FeO — CO + Fe (6.4)

In the main blow period mainly carbon and iron are oxidized. Silicium and
titanium have already been oxidized before this period. If it is assumed that
the oxidation of manganese, phosphorous and sulphur is negligible during the
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Figure 6.1: Influence of step changes on decarburization rate and accumulation
rate of oxygen (experimental).

main blow, the accumulation rate of oxygen in the converter can be calculated
using an iron oxide balance.

dO  dFeO  dFeOjpnee n dFeOqddition

oV dCreaction
dt — dt dt dt

dt

- (14+pC0O2) (6.5)

Where dl;liiO is the change of iron oxide content in the slag, % is the

change in iron oxide due to the oxygen blown by the lance, “WO;% is the
change in iron oxide due to the additions, pCO2 is the percentage of carbon

d dc“;i#““’" is the rate of decarburization.

dioxide formed an
Ghosh [10] has performed experiments in which oxygen was blown into a small
induction furnace filled with carbon containing iron. He observed a complete
consumption of the supplied oxygen and a continuous breaking and reforming
of the oxide film. Since no oxygen was detected in the waste gas, it is assumed

that all oxygen supplied by the lance is instantly converted to iron oxide.
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dFeOlance

e =2V 0, (6.6)

Where VO, is the measured amount of oxygen blown through the lance. The
amount of carbon in the steel bath changes due to decarburization and due to
the dissolving of scrap. The model will be used to simulate the measured step
responses, which last at most 120 seconds. It is assumed that the influence
of the dissolving of scrap on the change in carbon content in the steel can be
neglected for such a short period. It is also assumed that the change in steel
volume is negligible.

E _ _dCreactz'on
dt dt

d[C]

e (6.7)

= _V;teel
Where Ve is the volume of steel in the converter and [C] is the carbon con-
centration in the bath.

Several researchers performed experiments in which a small carbon containing
iron droplet was dropped into a slag [11; 12; 13]. They observed that the de-
carburization rate increased with increasing temperature, carbon concentration
and iron oxide concentration. It is therefore assumed, that the decarburization
reaction is rate limited and first order in carbon and iron oxide.

dCreaction

dt = steelAe%b;a [C} [FeO] (68)

Where A is the frequency factor, Fa is the activation energy, R is the gas
constant, T" is the bath temperature, [FeO] is the iron oxide concentration in
the slag and [C] is the carbon concentration in the steel.

Since the density of the steel and the slag is difficult to determine the reaction
rate is calculated using the molar carbon and iron oxide concentration. Since it
is assumed, that the steel volume is constant it is incorporated in the constant
ko.

dC’eratctioﬁ — koe BT [C*][FeO”] (6.9)
Where ky is a reaction rate constant, [F'eO*] is the molar iron oxide concen-
tration in the slag and [C*] is the molar carbon concentration in the steel.

It has been shown, that the lance height and the oxygen blowing rate affect
the amount of iron droplets that are formed due to jet impact [14; 15; 16]. An
increase in oxygen blowing rate increases the mass of iron droplets formed [14],
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while, above a certain lance height, an increase in lance height decreases the
mass of iron droplets formed [14; 15]. The mass of iron droplets in the slag af-
fects the reaction surface between the iron droplets and the slag at which part
of the decarburization reaction takes place. This effect is modeled by assuming
that the reaction rate constant changes if the lance height and oxygen blowing
rate change.

ko =a+ bV Oy — cHjgnee (6.10)

Where a, b and ¢ are model constants, VO3 is the oxygen blowing rate and
Hjgnee is the lance height. Equation 6.10 is only valid for a limited range of
lance heights and oxygen blowing rates, which are typical during main blow.
In contrast to what the calculation of the accumulation rate of oxygen in
equation 6.2 suggests, the added iron ore cannot react immediately. Instead,
the temperature of the iron ore needs to increase before it can dissolve. This
heat up period is modeled as a time lag. Since this time lag is not incorporated
in the calculation of the measured accumulation rate of oxygen (equation 6.2),
it is also not shown in the measured step response of the accumulation rate of
oxygen to a step change in the iron ore addition rate in figure 6.1. This explains
why the measured step response in the decarburization rate hardly changes in
the first 60 seconds, while the measured step response in the accumulation rate
of oxygen in the converter changes significantly during this period.

Since the iron ore is added as lumps, the dissolution rate of iron ore is not
uniform. The blown oxygen first has to react to iron oxide before it can react
with carbon. When the oxygen blowing rate changes, it will take some time
before the iron oxide content of the bath changes accordingly. Similarly, when
lance height and oxygen blowing rate are changed it will take some time before
the mass of droplets in the slag is changed accordingly. Therefore, an averaged
iron ore addition rate, oxygen blowing rate and lance height are used as inputs
to equations 6.5 and 6.10. Averaging is a way to model a dynamic effect.

6.4 Comparison measurements and model

The measured step responses can be simulated using the model presented in
the previous section. The initial values of variables in the model and the size
of steps are similar to those typical during the main blow. The activation
energy and initial iron oxide concentration were selected in such a way, that
at stationary input conditions the decarburization rate and accumulation rate
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Figure 6.2: Modeled and measured influence of an increase in the oxygen blow-
ing rate on decarburization rate and accumulation rate of oxygen.

of oxygen remain more or less constant. The constants a, b and ¢ and the
delay and the size of averaging windows were adjusted to fit the model to
measurement results.

The measured and modeled step response to an increase in oxygen blowing
rate, an increase and a decrease in lance height and the start and stop of
an ore addition are shown in figures 6.2, 6.3 and 6.4. In these figures, the
step changes occurred at ¢ = 10[s]. In figure 6.2 it can be seen that the
modeled and measured step response to an increase in oxygen blowing rate
correspond well. At 10 seconds the oxygen blowing rate is increased. At
this moment the increased oxygen input causes an increase of the iron oxide
content in the slag (equation 6.5). This can be seen as the initial small and
brief increase in the accumulation rate of oxygen. The increase in oxygen
blowing rate also increases the amount of iron droplets formed (equation 6.10),
thereby increasing the decarburization rate (equation 6.9). The increase in
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decarburization rate decreases the iron oxide content in the slag (equation 6.5).
The increase in decarburization rate and the decrease in iron oxide content can
both be seen in figure 6.2 between 10 and 70 seconds. At around 70 seconds
the mass of iron droplets in the slag no longer increases and has reached a
stable level. At this point, the decreased iron oxide concentration in the slag
reduces the decarburization rate (equation 6.9) until a decarburization rate is
reached (at around 130 seconds) at which oxygen consumption again matches
the oxygen supply.

In figure 6.3 it can be seen that the modeled and measured step response to
an increase and a decrease in lance height correspond well. At 10 seconds
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Figure 6.3: Modeled and measured influence of an increase and a decrease in
the lance height on the decarburization rate and accumulation rate of oxygen.

the lance height is increased. The increase in lance height causes a decrease
in the mass of iron droplets formed (equation 6.10), which in turn decreases
the decarburization rate (equation 6.9) and consequently increases the iron
oxide content of the bath (equation 6.5). The decrease in the decarburization
rate and the increase in the accumulation rate of oxygen can both be seen in
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figure 6.3 between 10 and 70 seconds. At around 70 seconds the mass of iron
droplets in the slag no longer diminishes. At this point, the increased iron
oxide concentration in the slag increases the decarburization rate (equation
6.9) until oxygen consumption matches oxygen supply. The step response to a
decrease in lance height can be explained in a similar manner.

In figure 6.4 it can be seen that the modeled and measured step response
to the start or stop of an iron ore addition correspond reasonably well. At
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Figure 6.4: Modeled and measured influence of an increase and a decrease in
iron ore addition rate on the decarburization rate and accumulation rate of
oxygen.

10 seconds an ore addition is started. Initially the temperature of the iron
ore increases and there is no effect of the ore addition on the decarburization
rate, as can been seen in figure 6.4. (There is an effect on the accumulation
rate of oxygen during this period. This is because the delay caused by the
heating up period is not considered in calculating the measured accumulation
rate of oxygen in equation 6.2). Then at around 60 seconds the ore starts
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to dissolve and it increases the iron oxide content in the slag (equation 6.5).
The increased iron oxide content causes an increase in the decarburization rate
(equation 6.9) which can be seen in figure 6.4. The step response to the stop
of ore addition can be explained in a similar manner. The difference between
model and experiment for the stop of an iron ore addition is larger. Other
dynamic effects may play a role and could explain part of this difference.

6.5 Conclusions

The average normalized step response to step changes in lance height, oxy-
gen blowing rate and addition rate of iron ore during the main blow were
determined in a data set containing 1006 batches. These step responses were
satisfactorily simulated using a process model consisting of an iron oxide and
a carbon balance and an additional equation describing the influence of the
lance height and oxygen blowing rate on the amount of iron droplets in the
slag and thereby on the decarburization rate.

It was found, that an increase in the oxygen blowing rate and the iron ore
addition rate both cause an increase in the decarburization rate. Both step
changes increase the oxygen supply to the converter. This increased oxygen
supply is eventually matched by an equal increase in oxygen consumption and
thus in an increase in the decarburization rate.

In addition it was found, that a decrease in lance height and an increase in
oxygen blowing rate both cause a temporary (additional) increase in the de-
carburization rate. It is known that both lance height and oxygen blowing rate
influence the amount of iron droplet formed due to jet impact. A decrease in
lance height and an increase in oxygen blowing rate both increase the amount
of iron droplets in the slag. Since part of the decarburization reaction takes
place between these iron droplets and the slag, the increase in reaction surface
between the iron droplets and the slag causes an increase in decarburization
rate. The increased decarburization rate diminishes the iron oxide concentra-
tion in the slag, which in turn again decreases the decarburization rate.

It was also found, that a step change in the iron ore addition rate does not
have an immediate effect on the decarburization rate. The delay is most likely
caused by the time needed to increase the temperature of the iron ore.
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7

Dynamic modeling of the
entire batch

In basic oxygen steelmaking static models are widely used to predict carbon con-
centration and temperature at the end of the batch. To improve control of the
process it would be required to know the carbon concentration and temperature
during the batch. In the previous chapter a dynamic model for the main blow,
a period in the batch during which the decarburization rate is more or less con-
stant, was presented. In this chapter, this main blow model is extended such
that it estimates the bath temperature and composition of both bath and slag
during the entire batch.

The model was validated using the measured decarburization rate and accumu-
lation rate of oxygen. The measured and the estimated decarburization rate
and accumulation rate of oxygen correspond well over the entire batch. Also
the calculated steel and slag compositions during the batch are similar to those
published in the literature. It can therefore be said that the important dynamic
phenomena that influence the decarburization rate and the accumulation rate
of oxygen have been modeled successfully.

The accuracy of the prediction of carbon concentration and temperature at the
sublance measurement of the static model is higher than that of the dynamic
model. The dynamic model should therefore be used in combination with a
static model.

81
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7.1 Introduction

In basic oxygen steelmaking, static models are used to control the end of batch
carbon concentration and temperature [1]. Important process variables such as
temperature and carbon concentration cannot be measured continuously due
to high temperatures and the dusty environment and are therefore not known
during the batch. A dynamic model which predicts the carbon concentration
and temperature during the batch would improve control of the process. Many
authors have published dynamic models in which the carbon concentration
and temperature are predicted [2; 3; 4]. Their models usually consist of a very
detailed physical description of the phenomena involved. These models are
subsequently used for off-line studies in order to anticipate new situations such
as the introduction of a new practice.

In the previous chapter a dynamic model for the main blow has been presented.
The main blow is a period during the middle of the batch in which mainly
carbon is oxidized and where the decarburization rate is more or less constant.
The presented main blow model consists of an iron oxide balance, a carbon
balance and some additional equations describing the decarburization rate. In
this chapter the dynamic model for the main blow will be extended such that
it can estimate the bath temperature and the composition of both bath and
slag during the entire batch. Van Lith [5] describes a modeling approach,
which will be followed in this chapter. A separate section is dedicated to
each of the steps described in the modeling approach. The author states, that
the first step in modeling is the formulation of model objectives and model
requirements and the selection of key variables. The second step involves the
basic modeling of the process, which consists of the formulation of the process
hypothesis, the process structure and the model framework. Subsequently the
unknown process parameters are estimated and identified. Finally the model
performance is evaluated. In the last sections some results are shown and the
conclusions are summarized.

7.2 Model objectives and model requirements

The dynamic model should be verifiable with continuous measurements and
should at least describe the carbon concentration and the temperature during
the batch. The available measurements, that indirectly give information about
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the carbon concentration of the bath and the composition of the slag are the
decarburization rate and accumulation rate of oxygen, which can be calculated
from waste gas composition and waste gas flow. In figure 7.1 the decarburiza-
tion rate and accumulation rate of oxygen for a typical batch are shown. The
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Figure 7.1: Decarburization rate and accumulation rate of oxygen of a typical
batch.

shape of the trajectory of the decarburization rate and the accumulation rate
of oxygen are each mainly determined by the oxidation of silicon, titanium and
iron at the beginning of the batch, by oxidation of carbon during the middle
of the batch (main blow period), and by the oxidation of iron at the end of
the batch. Therefore, at least these four bath components need to be modeled.
In the slag, the corresponding oxides, and magnesium oxide and calcium oxide
-which are added to reduce refractory wear- need to be modeled.

The temperature is normally not measured during the batch. However, in or-
der to be able to verify a modeled temperature trajectory a special test was
performed in which the temperature was measured multiple times during the
batch, for three batches. This was done using adapted Quick-tap drop-in sen-
sors. The selected key variables are Fe, C', Si and T for the bath composition,
FeO, 5105, TiOz, CaO and M gO for the slag composition and T for the bath
temperature.
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7.3 Basic modeling

7.3.1 Process hypothesis and process structure
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Figure 7.2: Data flow diagram of hybrid dynamic model which predicts carbon
concentration and temperature in a LD-converter.

The key variables can be described directly using state equations. The num-
bers listed in this text refer to the numbers shown in the dataflow diagram in
figure 7.2.

The bath temperature (1) can be approximated using the measured hot metal
temperature and the expected bath temperature at the end of the batch. The
change in slag composition (2) depends on the accumulation of oxides from
additions and oxides formed by reactions. The bath composition (3) changes
as a result of reactions and the melting of scrap (4). The reaction rate (5) may
depend on the concentration of the elements in the bath, the concentration
of oxides in the slag, the bath temperature, the carbon monoxide to carbon
dioxide ratio in the waste gas, the lance height and the oxygen blowing rate.
The iron oxide balance and carbon balance in the main blow model, described
in chapter 6, describe the change in slag composition and the change in bath
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composition during the main blow and they will both be extended such that
they can be used for the entire batch. The equations for the rate of the decar-
burization reaction in the main blow model, can be used as a starting point
for the calculation of the reaction rate for the entire batch.

7.3.2 Model framework

Due to the small number of temperature reference measurements only a sim-
plified temperature model can be developed. In chapter 3 it was shown, that
the steel temperature can be approximated using the assumption that the
steel temperature increases linearly with the amount of oxygen blown. This
approximation is based on the assumption that the temperature is (partly)
self-regulating as shown in figure 7.3. A higher temperature increases the dis-

Bath
temperature

+ o+

Dissolution Melting rate
rate scra
additions P

Figure 7.3: Self regulating principle of the bath temperature in basic oxygen
steelmaking.

solution rates of additions and the melting rate of scrap. The higher dissolution
and melting rates in turn cool the bath and cause a smaller increase in bath
temperature. Based on the approximation of a self-regulating temperature a
linear temperature profile is assumed.

dr

R 2 1
o arVO (7.1)
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With T is the steel temperature, ar is the regression coefficient and VO2 is
the oxygen blowing rate. Due to the charging of scrap the temperature drops
significantly at the start of the batch. The initial condition when calculating
the steel temperature during the batch is therefore:

To = Thm — AT (7.2)

Where Tj is the initial steel temperature, T}, is the measured hot metal tem-
perature and AT is the bath temperature drop due to charging of scrap.

The coefficient ap in equation 7.1 is chosen in such a way that the modeled
temperature at the end of the batch corresponds with the estimated tempera-
ture at the end of the batch as calculated by the static model [1].

The change in iron oxide composition of the slag can be described by extending
the iron oxide balance of the main blow model described in chapter 6. To de-
scribe the change in iron oxide during the entire batch the oxidation of silicon
and titanium also need to be considered:

dFeO B
at

dFeOlance + dFeOzgdition _ (1 + pCO2) Teactzon (73)

— dXreqction
ZSLT'L’ n redatc ion

Where dFd‘;O is the change of iron oxide content in the slag, % is the

change in iron oxide due to the oxygen blown by the lance, % is the

change in iron oxide due to the additions, pCO2 is the percentage of carbon
dioxide formed, dCredM is the decarburization rate, dX”jiw is the change in
bath content due to oxidation of element X, in this case silicon and titanium
and n is a stoichiometric coefficient.

Ghosh [6] has performed experiments in which oxygen was blown into a small
induction furnace filled with carbon containing iron. He observed a complete
consumption of the supplied oxygen and a continuous breaking and reforming
of oxide film. Since no oxygen was detected in the waste gas, it is assumed

that all oxygen is converted to iron oxide.

dFeOlance

=9 4
i VO, (7.4)
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Where VO, is the measured amount of oxygen blown with the lance.

The change in slag composition needs to be described not only for iron oxide,
but also for silicium oxide, titanium oxide, calcium oxide and magnesium oxide.
This change is caused by additions and in some cases also by reactions:

dXOn _ ereaction + dXOn,addition

dt dt dt (7.5)

Where % is the change in content of oxide X0, in slag and W

is the measured amount of component X0O,, added.

The change in bath composition for carbon, silicium, titanium and iron can be
described by the generalization of the carbon balance of the main blow model
described in chapter 6. The change in bath composition during the entire batch
is not only caused by reactions but also by the melting of scrap:

g _ _ereaction + dXSCTCLP
dt dt dt

(7.6)

Where % is the change in bath content of element X and dXZl;m” is the change

in bath content of element X due to scrap dissolution. It is assumed that the
scrap dissolution rate is constant:

dXscrap

T N Uscrap (7.7)

Where agerqp is the scrap dissolution rate which is thus independent of tem-
perature, scrap type and scrap size and n, is the fraction of element X in the
scrap.

The reaction rate for the decarburization reaction can be described similar as
in the main blow model.

dCrc;atctian _ koe%}i}a [C*] [FGO*] (78)
ko =a+bVOs — cHjgnee (79)

Where kg is a reaction rate constant, Fa is the activation energy, R is the gas
constant, 7" is the bath temperature, [F'eO*] is the molar iron oxide concentra-
tion in the slag, [C*] is the molar carbon concentration in the steel, a, b and
¢ are model constants, VO is the oxygen blowing rate and Hjgnce is the lance
height.
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The last of these two equations is however only valid for lance heights and oxy-
gen blowing rates that are typical during the main blow. When lance height
and oxygen blowing rate are outside this range, usually during the first part
of the batch, a constant kg can be used instead.

ko = koeq (7.10)

Where koeq is a constant value for kg at the start of the batch.

The oxidation of silicon and titanium only occur in the first few minutes of
the batch, where the temperature change is relatively small. It is therefore
assumed that their reaction rates can be calculated with a simplified version of
the equation for the rate of decarburization in the main blow model. Because
of the difference in stoichiometric coefficient a different reaction order in iron
oxide is chosen.

dSrcaction Z”;;C”"" = k[ Si*][FeO™)? (7.11)
7de1§;¢“% = ki [Ti¥][FeO*)? (7.12)

7.4 Estimation of unknown parameters

The model described in section 7.3 contains a number of unknown parame-
ters. The scrap melting rate (ascrqp) Was chosen in such a way, that all scrap
has become liquid at 70-80 % of the total batch time. The temperature drop
due to the addition of scrap at the start of the batch (AT) was estimated
using three batches in which the temperature was measured multiple times
during the batch. The modeled and measured temperatures for these batches
are shown in figure 7.4. The carbon monoxide to carbon dioxide ratio (pco2)
was chosen as the average measured ratio during the batch, measured with
waste gas analysis. The reaction rate constant of the oxidation of silicon and
titanium (kg;7;) was chosen in such a way, that the modeled and measured
accumulation rate of oxygen correspond at the beginning of the batch.

The reaction rate constant (ko) of the decarburization reaction can be esti-
mated with a proportional-estimator.

(ko)i = (Ko)i—1 + g(@ ac

_ i1
dt measured dt calculated ’

(7.13)

Where g is the gain and i is a discrete time instant. The values for a, b, ¢
and F, are the same as in the previous chapter. The activation energy of
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Figure 7.4: Fit of the modeled temperature (equation 7.1) for three batches in
which the temperature was measured multiple times during the batch.

the decarburization reaction (FE,) has a value for which the estimated reaction
rate constant of the decarburization reaction (k) remains constant during the
batch if there is no change in input variables such as the lance height and
oxygen blowing rate. The parameters a, b, ¢ and ko, have a value for which
the difference between the estimated reaction rate constant (equation 7.13)
and the modeled reaction rate constant (equation 7.9) is minimized.

7.5 Model Evaluation

The stated model objective and model requirements are that the dynamic
model should at least describe the carbon concentration and the temperature
during the batch and that the dynamic model should be verifiable with contin-
uous measurements. The fit of a modeled dynamic signal can be represented
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by the variance accounted for (VAF):

VAF = 100(1 — 29— Y), (7.14)
vary

Where var is the variance, ¢ is the model value and y is the measured value.

The modeled temperatures can only be verified for the three batches in which
the temperature was measured intermittently. The variance accounted for in
the temperature for these three batches is 96 %. In figure 7.4 it is shown that
measured and modeled bath temperatures correspond well during the entire
batch. The average variance accounted for for the decarburization rate and
the accumulation rate of oxygen for a collective of over 700 batches is 74%
and 63% respectively. The measured and the modeled decarburization rate
are shown in figure 7.5. The modeled decarburization rate and accumulation
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Figure 7.5: Measured and predicted decarburization rate and accumulation
rate of oxygen of a typical batch.

rate of oxygen follow the trends in the measured signals well. The described
dynamic model predicts the carbon concentration and bath temperature. The
dynamic model is verified with continuous measurements. The dynamic model
therefore meets the model objectives and requirements.
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7.6 Results

Not only the general trend in the decarburization rate and accumulation rate
of oxygen as described in section 2 is followed. Also the changes in the decar-
burization rate and accumulation rate of oxygen caused by changes in control
variables are followed well. The lance height, oxygen blowing rate and the
addition rate of iron ore corresponding to the batch shown in figure 7.5 are
shown in figure 7.6. In the batch shown in figure 7.5 the lance height and oxy-

Oxygen blowing rate
s | ance height

= = = = [ron ore addition rate

|a¥___ 4 !
1
! 1
o
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Figure 7.6: Lance height, oxygen blowing rate and iron ore addition rate cor-
responding to decarburization rate and accumulation rate shown in figure 7.5.

gen blowing rate have been changed simultaneously. When the lance height
was increased, the oxygen blowing rate was increased as well and when the
lance height was decreased the oxygen blowing rate was decreased as well. In
equation 7.9 it is shown that both changes have an opposite effect on the de-
carburization rate. In this case the effect of the oxygen blowing rate is the
largest. The effects can be seen in both measurement and model. At around
250 [s] the oxygen blowing rate was decreased, this caused a decrease in decar-
burization rate. Between 550 and 700 [s] and again between 1200 and 1300 [s]
the oxygen blowing rate was decreased causing a decrease in decarburization



92 7. DYNAMIC MODELING OF THE ENTIRE BATCH

rate. At around 1100 [s] the oxygen blowing rate was increased. This caused an
increase in the decarburization rate. Between 600 and 800 [s] iron ore is added.
This causes an increase in the decarburization rate which can be observed for
both the measurement and the model.

With the dynamic model the change in steel and slag composition during the
batch can be calculated. A typical trajectory of the steel and slag composition
is shown in figure 7.7. The calculated steel and slag composition are similar
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Figure 7.7: Predicted steel and slag composition for a typical batch.

to those found in the literature [7]. The silicon is almost completely oxidized
in the first few minutes of the batch and during the entire batch a constant
decrease in carbon concentration can be observed. Also similar is the typical
change in iron oxide concentration, which is high in the first part of the batch,
then reduces and increases again in the last part of the batch.

It would be of interest to compare the accuracy of prediction of the carbon
concentration and the bath temperature of the dynamic model with the static
models used to calculate necessary raw material input described in the lit-
erature [1]. The accuracy of prediction of both models at the intermediate
sublance measurement is compared in table 7.1. The standard deviation of the
static model is lower than that of the dynamic model. This is according to
expectation since the level of detail of the static model is much higher than
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Table 7.1: Accuracy of prediction of carbon composition and temperature at
sublance measurement of the static and the dynamic model.

static model | dynamic model
std carbon [.1073w%] | 52-62 95

std temperature [K] | 11.6-11.7 11.6-11.7

that of the dynamic model. The dynamic model should therefore be used in
combination with the static model.

7.7 Conclusions

The calculated and measured decarburization rate and accumulation rate of
oxygen correspond well during the entire batch, as can be seen in figure 7.5.
The variance accounted for in the decarburization rate and the accumulation
rate of oxygen is 74% and 63% respectively. Also the calculated steel and slag
compositions during the batch are similar to those measured in earlier publi-
cations. It can therefore be said that the important dynamic phenomena that
influence the carbon concentration of the bath have successfully been modeled.
The accuracy of prediction of the static model is higher than that of the dy-
namic model. The dynamic model should therefore be used in combination
with the static model, in which the static model is used to calculate the nec-
essary raw material input and the dynamic model is used to describe the tem-
perature and the steel and slag composition during the batch.
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8

Statistical slop prediction
model

Slopping or foam overflow is a problem in basic oxygen steelmaking. Slopping
can be prevented if it can be predicted by a model. In the literature research
has been published when slopping occurs during a batch and which factors af-
fect the foam height in steady state experiments. In this chapter both types of
information are combined in a statistical two layer hierarchical slop prediction
model.

The inputs of the presented model are the raw material input data and the
physical properties of the slag, which were estimated with a dynamic model,
which has been described in chapters 6 and 7. The first hierarchical layer pre-
dicts when slopping occurs during a batch based on boolean expressions. The
second hierarchical layer predicts the probability of slopping based on a logistic
model. The resulting slop prediction model is relatively simple, using only a
small number of input variables. Nevertheless it predicts 73% of the slopping
batches and 71% of the batches that do not slop correctly.

8.1 Introduction

In basic oxygen steelmaking small gas bubbles are created due to the oxida-
tion of large amounts of carbon. These gas bubbles rise through a slag phase
thus creating a foam. Slopping or foam overflow can be a major problem in

95
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converter operation.

In a foam the gas bubbles are separated by thin films also called Plateau bor-
ders [1; 2]. Gravity causes the liquid to drain out of the Plateau borders,
reducing the thickness of the liquid film at the top of the foam thereby eventu-
ally causing the foam bubbles to collapse. The rate of foam collapse depends
on the thickness of the Plateau borders at the top of the foam and thus on
the physical properties of the slag. The rate of foam formation depends on the
rate of gas formation.

Some research has been conducted on when slopping occurs during a batch [3].
Furthermore, many steady state experimental studies have been performed to
investigate the factors that influence the foam height [4; 5; 6; 7; 8]. One of the
ways to prevent slopping is by predicting it based on a model that combines
the knowledge of foaming described in the literature. The information avail-
able on slopping is twofold. On the one hand information is available on when
slopping occurs and on the other hand it is known which factors influence the
foam height. These two types of information can best be combined in a two
layer hierarchical model.

A problem in modeling of slopping is that neither the foam height itself, nor
the physical properties that influence the foam height can be measured contin-
uously and they are therefore not exactly known during the batch. Although
the physical properties that influence the foam height have been identified
with steady state experiments, it is not exactly known how all these factors
combined influence the foam height [4], nor can the steady state experiments
directly be used to develop a model [9]. Since the available physical knowledge
is not precise, the two layers of the hierarchical slop prediction model can best
be described using statistical methods.

How slopping can be predicted using the available physical knowledge is de-
scribed in this chapter. First the theory on slopping is described. Subse-
quently the knowledge when slopping occurs and which factors affect it is used
to construct a slop prediction model. In the following sections the results are
discussed and the conclusions are summarized.

8.2 Theory

Some research has been done when slopping occurs during a batch [3]. Cherny-
atevich et al. [3] have found that, with a constant oxygen supply rate and lance
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height above the bath, the maximum level of the foam is usually attained on
the termination of the vigorous oxidation of silicon when the carbon elimina-
tion reaction is still not intensively developed and the slag has a high iron oxide
content and is fluid. Furthermore they found, that a change in the level of the
lance, a change in the oxygen blowing rate and the addition of oxidants, such
as iron ore, can cause the onset of slopping.

Much research has been done to identify why some batches slop and others do
not. Most researchers conducted steady state experiments in which foam is
generated by bubbling a gas through a nozzle. They changed variables such as
slag composition, slag temperature and bubble rate and studied the influence
on the steady state foam height. In these experiments it was found that an
increase in slag temperature decreased the foam height [4; 6; 7; 8]. It was also
found that the slag composition has a significant influence on the foam height.
An increase in iron oxide concentration, for instance, was found to decrease
the foam height [4; 7]. Another important factor influencing the foam height is
the size and amount of particles present. Large particle of e.g. cokes and coal
(> Imm) were found to decrease the foam height [5; 8], while small particles
were found to increase the foam height [6; 8].

Since it is difficult to measure the physical properties of the slag continuously
in basic oxygen steelmaking, some researchers have focussed on predicting the
slop sensitivity of an entire batch based on raw material input data instead
[10].

8.3 Modeling

Information on when a batch slops on the one hand and information on which
factors influence the probability of slopping on the other hand can best be
combined in a two layer hierarchical model as is shown in figure 8.1. In a
campaign of 1006 batches the instances of slopping were identified using camera
observation as described in chapter 4. Of the 1006 batches 42% slopped and
some of the slopping batches slopped multiple times during the batch. In
figure 8.2 the times at which the batches start to slop are shown. Most of the
slopping occurrences (61%) start around 300 to a little before 500 [s] after the
start of the batch. These slopping occurrences coincide with the termination of
silicon oxidation and the start of carbon oxidation. The remainder of slopping
occurrences (39%) start after this period when oxidation of carbon is in full
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Figure 8.1: Two layer hierarchical slop prediction model.

progress. About half of the slopping batches that occur when oxidation of
carbon is full progress are directly preceded by a change in lance height, a
change in oxygen blowing rate or by the addition of iron ore. The observation,
that most slopping occurrences start at the termination of silicon oxidation
and that of the remaining slopping occurrences many are preceded by changes
in lance height, oxygen blowing rate or the addition of iron ore is in accordance
with the findings of Chernyatevitch [3].
Since the majority of slopping batches start to slop at the termination of the
oxidation of silicon, this type of slopping batch will be modeled. The time at
which slopping occurs is well defined and can best be modeled by a boolean
expression.

it D < E Position =1 (8.1)

if D > E Position =0 (8.2)

In which Position is a parameter which is either 0 or 1 and which describes
whether slopping can occur at a given time. The first layer of the model thus
states whether slopping could occur at a certain time during the batch.

The raw material input data as well as the physical properties of the slag, such
as its composition and temperature, have been shown to influence the foam
height. Both the physical properties of the slag at the onset of slopping and
the raw material input of the batch can thus be used as inputs for the second
layer of the hierarchical model. Since the probability of slopping should in
reality always remain between 0 and 1, the probability of slopping can best be
modeled using a logistic model [11].

1 = by + byPosition + b3x1 + ... + bpioxy, (8.3)
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In which P is the probability of slopping, 1 is a regression parameter for slop-
ping, x; till x,, are the input variables and by to b, 2 are regression coefficients.

P pu—

(8.4)

8.4 Results

Unfortunately the physical properties of the slag can not be measured contin-
uously. The physical properties can however be estimated using the dynamic
process model described in chapters 6 and 7. To reduce the model error the
measured decarburization rate was used to estimate the reaction rate constant
of the decarburization reaction in this model. The estimated slag composition
and temperature of a typical batch and the time at which this batch slops are
shown in figure 8.3. The batch starts to slop just after the oxidation of silicon.
In figure 8.3 it can be seen that this period coincides with a maximum in iron
oxide content. The boolean expression in the first layer of the model therefore



100 8. STATISTICAL SLOP PREDICTION MODEL

10 : : 1700
of Observation | 16501

5 of slopping

g s8f - 1600}

& 7t £ 1550}

» g

S 6 g 1500

c

Q5 8 1450}

c IS

(@]

o 4t 2 1400}

) ©

2 3 L 13501

o (99}

S 2f : 1300} .

= Observation
ir 1 12501 of slopping
0 1200 : ‘
0 500 1000 0 500 1000

Time [s] Time [s]

Figure 8.3: Iron oxide content and temperature during the batch as well as
when slopping occurs.

evaluates whether the iron oxide content is near a local maximum.
if (FeOjpcaimar — FeO) < € Position = 1 (8.5)

if (FeOjocatmar — FeO) > € Position = 0 (8.6)

Where FeOjpcaimaz 1S the iron oxide content in the local maximum and € is a
predefined error margin. Using this expression 76% of the calculated slop po-
sitions overlap with the observed slop positions. In the other batches slopping
occurs near the calculated slop position.

The second layer of the hierarchical model has been constructed using a bot-
tom up approach. Only those physical properties and raw material input data
that improve the accuracy of the model significantly have been added. The
second layer of the model is defined as:

n = by + baPosition — b3[F'eO*| — byHeavyscrap — b5[C*] (8.7)
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(8.8)

In which [F'eO*] is the molar iron oxide concentration, Heavyscrap is the weight
of one of the scrap types, [C*] is the carbon concentration in the steel, n is a
regression parameter for slopping and P is the probability of slopping.

Since the slop prediction model is a statistical model, the relationship between
the inputs and the slop probability need not be causal. However, it would be
interesting to see if the influence of the inputs on the slop probability in the
model can be explained physically.

It can be seen, that in the model, the iron oxide concentration has a negative
influence on the slop probability. This is consistent with findings in steady state
experiments, in which it was found that an increase in iron oxide concentration
decreases the foam height [4; 7].

The model also states a negative influence of the charged amount of heavy
scrap on the slop probability. The dynamic model used, bases its estimation of
the temperature on a linear approximation as can be seen in figure 8.3. This
is a simplification and in reality the amount and types of scrap used influence
the temperature. Simulation studies by Graveland et al. [12] have shown, that
the use of a higher percentage of heavy scrap causes a higher temperature in
the first part of the batch. The negative influence of the heavy scrap weight
on the slop probability is therefore consistent with the findings in steady state
experiments, in which it was found that an increase in temperature decreases
the slop probability [4; 6; 7; 8].

The model furthermore states a negative influence of the carbon concentration
in the steel on the slop probability. The cause for this relationship is not
completely clear, but since the carbon concentration and the process time are
correlated, it may point towards an influence of the process time instead.

For some batches in the collective the dynamic model could not be used because
necessary input data was not available. Of the collective of 1006 batches the
slop probability could be calculated for 460 non-slopping batches and for 172
batches that only slopped at the termination of the oxidation of silicon. In
figure 8.4 the calculated slop probability of a typical batch is shown. In this
figure, it can be seen that the slop probability is highest when slopping is
observed. If it is assumed, that slopping only occurs when the probability
of slopping is above 0.60, then 73% of the slopping batches and 71% of the
non-slopping batches are correctly detected. Slop detection is a type of binary
classification and can be presented in a truth table [13] as is shown in table
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Figure 8.4: Calculated slop probability of a typical batch.

8.1. The truth table and its properties are more extensively covered in chapter
4. In the columns the classifying property is shown. The column marked True
represent the batches that slop at the termination of silicon oxidation and the
column marked False represents the non-slopping batches. In the rows the
prediction of the slop probability model is shown. The row marked Positive
indicates that slopping is predicted and the row marked Negative indicates
that slopping is not predicted. Of the 172 slopping batches 126 were predicted
to be slopping and 46 were predicted to be non-slopping. Of the 460 non-
slopping batches 133 were predicted to be slopping and 327 were predicted to
be non-slopping.
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Table 8.1: Truth table for slop prediction model.
True (slopping) | False (non-slopping)
Positive (slopping predicted) 126 133
Negative (slopping not predicted) | 46 327

8.5 Conclusions

The majority of the slopping occurrences (61%) coincide with the termination
of silicon oxidation. This type of slopping batch has been modeled using a
statistical two layer hierarchical model. As input variables the raw material
input data as well as the physical properties of the slag, as estimated by a
dynamic model, were used. The slop probability model is simple, using only a
small number of input variables. Nevertheless, it predicts 73% of the slopping
batches and 71% of the batches that do not slop correctly.
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9

Theoretical dynamic
optimization

In recent years there is a trend to increase the production capacity in steel-
making. This has mostly been achieved by the purchase of new equipment,
improvement of logistics and improvement of maintenance. Alternatively, the
production capacity can be increased by minimization of the batch time in basic
oxygen steelmaking, if this process step is the bottleneck. In this chapter mini-
mization of the batch time by application of dynamic optimization is discussed.
Using the dynamic model described in chapters 6 and 7 and a constraint to
prevent slopping described in chapter 8, it is derived, that dynamic optimiza-
tion results in a bang-bang control strategy in which the lance height and the
oxygen blowing rate are either at their minimum or their mazrimum value.

Currently, the set point of control variables are based on standard operating
procedures and were developed during many years of practical experience. In
these standard operating procedures a certain mazximum oxygen blowing rate is
used. The oxygen lance is, however, able to supply oxygen at a higher rate. The
optimal strategy reduces the batch time with 61 [s] or 4.6% on average. When
the higher mazrimum oxygen blowing rate is used, the batch time is reduced with
165 [s] or 12.4% on average. Due to modeling errors, the reduction in batch
time may be different when the calculated control strategy is applied in practice.
The calculated optimal strategy, does, however, indicate the direction in which
the currently used control strategy can be changed to reduce the batch time.
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9.1 Introduction

In industry, processes can be optimized to achieve certain goals, such as the
minimization of energy consumption, the minimization of costs or the mini-
mization of production time. Optimization problems can be divided into static
optimization problems and dynamic optimization problems. Static optimiza-
tion problems consist of determining the optimal value of a parameter or vari-
able, while dynamic optimization problems consist of determining the optimal
trajectory of a parameter or variable and thus the optimal value of that pa-
rameter or variable in time [1; 2; 3].

Both static and dynamic optimization of steelmaking processes is covered in
the literature [4; 5; 6; 7; 8]. Static optimization is used to either minimize pro-
duction costs by optimizing material input data [4], or to minimize the emission
of COy by optimizing scrap input [5]. Dynamic optimization is mainly applied
to the operation of the Electric Arc Furnace (EAF) [6; 7; 8]. Dynamic opti-
mization of EAF operation has been used to optimize the nett-benefit of post
combustion, to minimize the air-in leakage and to minimize production costs.
Although Cordova et al. [7] mention their intention to dynamically optimize
the use of post-combustion oxygen in basic oxygen steelmaking, to our knowl-
edge dynamic optimization has, until now, not been applied to basic oxygen
steelmaking.

In recent years there has been a trend to increase the production capac-
ity in steelmaking. This has mostly been achieved by investments in addi-
tional equipment, improvement of logistics and by decreasing maintenance time
[9; 10; 11; 12]. Minimization of the batch time in the basic oxygen steelmaking
converter might contribute to the desired increase in production capacity, if
the converter is the bottleneck in production.

In this chapter dynamic optimization of basic oxygen steelmaking with the
goal to minimize batch time will be discussed. In the first section the prob-
lem formulation is given. In second section the optimal control trajectories
for the oxygen blowing rate and the lance height are discussed. Subsequently
the results of application of these optimal control trajectories are shown. The
following sections contain a discussion and the conclusions.
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9.2 Problem formulation

Optimization problems consist of an objective function, a set of state equations
constituting the process model and conditions which, for instance, define the
initial value of variables in the model. Some optimization problems also contain
constraints [1; 2; 3]. The objective function, the state equations, the conditions
and constraints are discussed in subsequent subsections.

9.2.1 Objective function

The objective is to minimize the production time of a particular batch. This
can be described by the minimum time problem:

tf
J:/ dt =t; —to (9.1)
t0

In which J is the objective function, ty is the time at the start of the batch
and t; is the time at the end of the batch.

9.2.2 State equations

In chapters 6 and 7 a dynamic model of the basic oxygen steelmaking process
is described, that can be used for dynamic optimization. This dynamic model
is based on a given data set and is generally only valid for a range of control
variables that occur within this data set. The addition patterns and bottom
blowing patterns have been developed using many years of practical experi-
ence to ensure that additions dissolve and that converter mixing is adequate.
The influence of converter mixing on the process and the influence of process
variables on the dissolving rate of additions is not taken into account in the
mentioned dynamic process model. In order to assure that the additions dis-
solve and that mixing is correct, bottom blowing and addition patterns should
not be changed when optimizing. The control variables are therefore the oxy-
gen blowing rate (VO2) and the lance height (Hjgnee)-
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The state equations describing the model are:

fl= T =ap(t)VO, (9.2)
f2= FeO =2VO0y+ Apco
—(1 4 pCOs)(a + bV Os — cHignee)e BT [C*][FeO*] (9.3)
—2kg;[Si*|[FeO*)? — 2kp;[Ti*][FeO*]?

f3= CaO = Ac.o(t) (9.4)
fA= MgO = Apgo(t) (9.5)
fo5= 8i02 = Agi0o(t) + ks;[Si*][FeO*]? (9.6)
f6= TiO2 = Apioa(t) + kpi[Ti*|[FeO*]? (9.7)
fi= ¢ =Sc(t) = (a+bVO0s — cHignee)e T [C*][FeO]  (9.8)
f8= Si = Sg(t) — ksi[Si*][FeO*]? (9.9)
9= Ti =Sp(t) — kp[Ti*][FeO*)? (9.10)

fl0= Fe =Sp.(t)—2VO0,
+(1+ pCO2)(a + BV Oz — cHignee)e BT [C*][FeO%](9.11)
+2ks;[Si|[FeO]? + 2kp;[Ti*][FeO*)?

Where fn are the state equations, A,(t) are the addition rates for the oxides,
Sz (t) the scrap dissolving rates for the specific element, T is the steel temper-
ature, CaO, MgO, SiOs, TiO,, FeO are the calcium oxide, magnesium oxide,
silicium oxide, titanium oxide and iron oxide content in the slag, C, Si, T4,
Fe are the steel carbon, silicium, titanium and iron content, a, b and c are
constants, Fa is the activation energy, R is the gas constant, [C*], [Si*], [T¥]
are the carbon, silicon and titanium molar concentration in the steel, [F'eO*]
is the molar iron oxide concentration in the slag, kg; and kp; are the reaction
rate constants for silicium and titanium and pC'O; is the carbon mono oxide
carbon dioxide ratio in the waste gasses.

9.2.3 Conditions

The initial conditions of all the states are known and can be calculated based
on batch raw material data.
xi(to) = Z50 (9.12)
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At the end of the batch the demanded carbon concentration should be reached.

Xc<tf) = XC,demanded (913)

Where X¢ dgemanded is the demanded carbon concentration.

9.2.4 Constraints

There are a number of constraints necessary. The model is only valid in a
certain range. Therefore, the control variables need to be between predefined
values.

a1 <VOz2 <a (9.14)
a3 < Hignee < a4 (915)

Where a1, a9, a3, as are the bounds in the control variables. In addition, slop-
ping must be prevented. A slop prediction model was described in chapter
8.

n = by + baPosition — b3[FeO*] — byHeavyscrap — bs[C”] (9.16)

Where b1, bo, b3, by, b5 are constants, Position is a variable which depends on
the value of F'eO, Heavyscrap is the weight of the heavy scrap charged and 7 is
a regression parameter for slopping. The slop probability (P) can be expressed

as:
en

P =

1+ en

If the slop probability exceeds 0.60 it is probable that slopping occurs. An
inequality constraint to prevent slopping can therefore be described as:

(9.17)

P<06—g(x)=06—-—P>0 (9.18)

Where g(z) is the inequality constraint, which depends on the states. There are
several ways to incorporate inequality constraints in the optimization problem.
One approach is to define a new state variable [1].

f11 = g(x)%k (9.19)

Where £ is a step function defined by:
k=K if g(z) >0 (9.20)
k=0if g(z) <0 (9.21)

Where K is a constant.



110 9. THEORETICAL DYNAMIC OPTIMIZATION

9.3 Optimal control strategy

In optimization problems Pontryagins minimum principle can be used to find
the optimal control trajectory. The minimum principle states that a neces-
sary condition for solving a dynamic optimization problem is that the controls
should be chosen such as to minimize the Hamiltonian. An introduction to
this principle can be found in books by Ramirez, Kamien and Schwartz and
Agrawal and Fabien [1; 2; 3].

The Hamiltonian is defined as [1]:

H = F(z,u,t) + 5=V N fi (9.22)

Where H is the Hamiltonian, f; are the state equations and \; are the costates.
The controls appear linear and bounded in the Hamiltonian, implying that the
optimal value for the controls are either at their minimum or their maximum
value [1]. During the batch, these control variables may switch from their
minimum value to their maximum value and vice versa. This type of control
strategy is commonly referred to as bang-bang control.

The goal is to reach the demanded carbon concentration as quickly as possible,
in such a manner that slopping does not occur. The batch time is at its
minimum when the oxygen blowing rate is at it’s maximum value and the
lance height is at its minimum value. The lance height only has a small effect
on the batch time.

Slopping occurs during the slop sensitive period, when the iron oxide content
in the slag has just reached a maximum. The slop probability depends on
the amount of heavy scrap charged, the iron oxide concentration in the slag
and the carbon concentration in the steel during this slop sensitive period.
By changing the control variables the iron oxide concentration and the carbon
concentration can be influenced. However, the influence of the controls on the
iron oxide concentration is largest. Slopping is less likely to occur when the
iron oxide concentration in the slag is high during the slop sensitive period.
In figure 9.1 the iron oxide concentration for three different control trajectories
for a typical batch is shown. The black line shows the calculated iron oxide
concentration in the slag, when the oxygen blowing rate is 4.2.10* [nm3/h]
and the lance height is 160 [cm]. In the first period of the batch the blown
oxygen oxidizes part of the iron and the iron oxide concentration increases
until it reaches a maximum in the slop sensitive period. Then part of the iron
oxide is used to oxidize carbon and the iron oxide concentration decreases. At
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Figure 9.1: Influence of steps in lance height and oxygen blowing rate on iron
oxide concentration in the slag.

the end of the batch part of the blown oxygen is used to oxidize iron, due to
the diminished carbon concentration, and the iron oxide concentration again
increases.

The gray line shows the calculated iron oxide concentration in the slag, when
the oxygen blowing rate is 4.2.10 [nm?/h] and the lance height is 190 [cm] and
is reduced to 160 [cm] at t=>500 [s]. It can be seen, that the higher lance height
during the first part of the batch causes an increased iron oxide concentration
in the first part of the batch. It can also be seen, that the batch history with
respect to lance height changes does not seem to affect the final batch time.
The dotted gray line shows the calculated iron oxide concentration in the slag,
when the oxygen blowing rate is 4.95.10* [nm?/h] and is reduced to 4.2.10*
[nm?3/h] at t=500 [s] while the lance height is 160 [cm]. It can be seen, that
the higher oxygen blowing rate during the first part of the batch causes a lower
iron oxide concentration in the first part of the batch. It can also be seen that
the final batch time is affected by the batch history with respect to changes in
oxygen blowing rate.

Since slopping is less likely to occur when the iron oxide concentration in the
slag is high, slopping can be prevented by using a high lance height and a low
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oxygen blowing rate during the slop sensitive period. To prevent slopping and
to minimize the batch time, the lance height should be at its maximum value
at the start of the batch and be reduced to its minimum value after the slop
sensitive period has elapsed. The oxygen blowing rate must be at its minimum
value during the slop sensitive period. However, the duration of the oxygen
blowing rate at its minimum value should be kept as short as possible.

9.4 Results

When minimizing the batch time, the oxygen blowing rate and the lance height
need to be between predefined boundaries. During normal operation (the stan-
dard batch), the oxygen blowing rate is slowly increased at the start of the
batch and the lance height is high, due to safety reasons. In the last part of
the batch the steel temperature and carbon concentration are measured. To
enable this measurement the oxygen blowing rate is lowered. At the start of
the batch, the optimized batch should have a similar oxygen blowing rate as
the standard batch, for safety reasons. The optimized batch should also have
a similar temporary reduction in oxygen blowing rate at the end of the batch
as the standard batch to enable the measurement of the steel temperature and
carbon concentration.

The models on which the optimization is based are valid in a certain range
(oxygen blowing rate between 3.5.10% and 4.95.10* [nm3/h] and lance height
between 150 and 220 [cm]). In the optimal batch, the lance height and oxygen
blowing rate should remain between these boundaries. The oxygen lance can,
however, supply oxygen up to rates of 5.5.10* [nm?/h]. Since the oxygen blow-
ing rate highly influences the batch time, it would be interesting to explore the
influence of using this higher oxygen blowing rate.

In figure 9.2 the standard and the optimal oxygen blowing rate and lance
height and the resulting iron oxide concentration and slop probability of a
typical batch are shown. All batches look fairly similar to this one. In the
standard batch the slop probability exceeds 0.6 at around 440 [s|] and slopping
occurs. In the optimal batch the maximum lance height is used and addition-
ally the oxygen blowing rate is reduced to its minimum value for a short time
to prevent slopping. Both measures cause a higher iron oxide concentration
during the slop sensitive period and thereby decrease the slop probability to
below 0.6.
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Figure 9.2: Standard and optimal trajectory of a batch where the oxygen
blowing rate has to be reduced during the slop sensitive period.

It is interesting to investigate whether the batch time is sensitive to the time
at which the oxygen blowing rate is decreased. In figure 9.3 the time at which
the oxygen blowing rate is decreased and the corresponding duration of the
decrease in oxygen blowing rate for which slopping is prevented are shown. If
the oxygen blowing rate is not reduced during the batch, slopping is predicted
at 440 [s]. It is not possible to prevent slopping by decreasing the oxygen
blowing rate after this time, thus the region after 440 [s] is infeasible. In the
region from 140 [s] before the slop sensitive period up to just before the slop
sensitive period itself the required duration of the oxygen blowing rate decrease
is between 15 and 25 [s]. The batch time will be only slightly different for this
region and the batch time is therefore only moderately sensitive to the time at
which the oxygen blowing rate is reduced.

It seems counterintuitive that a short decrease in oxygen blowing rate a long
time before the slop sensitive period would prevent slopping. Because, when
the oxygen blowing rate is increased again the slop sensitive period has not
been passed. Figure 9.3, for instance, suggests, that slopping can be prevented
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Figure 9.3: Start and duration of oxygen blowing rate at the minimum value.

if the oxygen blowing rate is decreased for 25 [s] at t = 310 [s]. This means,
that if the suggested preventative measure is taken, the oxygen blowing rate is
again at its maximum long before the slop sensitive period at 440 [s]. In figure
9.4 the calculated iron oxide concentration is shown for the situation where
the oxygen blowing rate is at its maximum during the entire batch and for the
situation where the oxygen blowing rate is decreased for 25 [s] at t=310 [s]. It
can be seen, that the calculated iron oxide concentration is higher at ¢ = 440
[s] for the situation where the oxygen blowing rate has briefly been decreased.
The higher iron oxide concentration in the slag causes the difference in the
calculated slop probability.

The reduction in batch time that can be achieved by using the optimal trajec-
tory is on average 61 [s] or 4.6% for a maximum oxygen supply rate of 4.95.10%
[nm3/h] and 165 [s] or 12.4% for a maximum oxygen supply rate of 5.5.10%
[nm?3/h].



9.5. DISCUSSION 115

Maximum O2
= = = Decrease in O2 at 310 [s]

0.25F

o
N
T

0.15F f¥ Decrease in 02

Slop sensitive period
0.1

0.05

Iron oxide concentration [mol/mol]

0 I I I I I
0 200 400 600 800 1000 1200

Time [s]

Figure 9.4: Calculated iron oxide concentration in slag for a batch with a
maximum oxygen blowing rate and for a batch with a decrease in oxygen
blowing rate at ¢t = 310 [s] for 25 [s].

9.5 Discussion

The models used for optimization may contain a modeling error. The reduc-
tion in batch time, that is stated in this chapter, might therefore deviate from
the calculated reduction when implementing the calculated optimal strategy.
Furthermore, the used models were estimated based on a data set that only
contains standard batches. Optimization changes the control strategy consid-
erably and application of the optimal strategy might cause other unforseen
effects. For example, the lime dissolution rate is known to depend on the iron
oxide concentration in the slag [14; 15]. The changes in the control strategy
have an effect on the iron oxide concentration in the slag (as is shown in fig-
ure 9.2). These changes might thus also influence the dissolution rate of lime.
Additionally, the difference in control trajectory may cause differences in, for
instance, heat losses. These secondary effects have not been taken into account
in the model.
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9.6 Conclusions

Dynamic optimization of basic oxygen steelmaking results in a control strategy
in which controls are either at their minimum or their maximum values. During
the batch, these control variables may switch from their minimum value to their
maximum value and vise versa.

A high lance height reduces the slop probability, while a short batch time is
promoted by a low lance height at the end of the batch. The optimal control
strategy for the lance height is thus a strategy in which the lance height is at
its maximum value during the first part of the batch and the lance height is
switched to its minimum value after the slop sensitive period has elapsed.
The batch time is shortest when the oxygen blowing rate is at its maximum
value during the entire batch. However, a low oxygen blowing rate reduces the
probability of slopping. The optimal control strategy for the oxygen blowing
rate is, therefore, a strategy in which the oxygen blowing rate is at its maximum
value during the batch and it is reduced to its minimum value during the slop
sensitive period to prevent slopping.

Using the optimal strategy and a maximum oxygen blowing rate of 4.95.10%
[nm?3/h] the batch time can on average be reduced with 61 [s] or 4.6%. Using a
maximum oxygen blowing rate of 5.5.10* [nm?/h] the batch time can on average
even be reduced with 165 [s] or 12.4%. Due to modeling errors, this reduction
in batch time may not be fully realizable when the calculated optimal strategy
is applied in practice. The calculated optimal strategy, however, indicates the
direction in which the currently used control strategy can be changed to reduce
the batch time.
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Conclusions

The objective of this thesis is to develop a dynamic control strategy for ba-
sic oxygen steelmaking which both reduces the occurrence of slopping and
increases the production capacity by reducing the batch time. This control
strategy was calculated by dynamic optimization of the process. For dynamic
optimization a dynamic process model, that describes the steel and slag compo-
sition, the steel temperature and slopping, was developed. Since, the develop-
ment of such a model would greatly benefit from the continuous measurement
of important process variables, their feasibility was investigated as well.

Chapters 1 and 2 contain an introduction and background information.

In chapter 3 the feasibility of the continuous measurement of the steel com-
position, the slag composition, the steel temperature and the foam height was
investigated. Due to extreme process conditions most measurements were in-
feasible. To develop a dynamic process model, however, continuous reference
measurements were needed. For validation of steel and slag composition the
decarburization rate and the accumulation rate of oxygen inside the converter
were used.

In chapter 4 a slop detection system was presented that can be used for the
detection of slopping, since direct measurement of the foam height was not
feasible. Images taken by a camera viewing the converter mouth were used to
design a slop detection algorithm. The detection algorithm can detect slopping

119
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within 5 seconds for 73% of the slopping batches. Of the non-slopping batches
94% was correctly detected as non-slopping.

The temperature and carbon concentration at the end of the batch are currently
predicted by a first principles static model using the raw material additions
as inputs. Chapter 5 showed that a PLS model was not a good alternative to
replace this static model.

In chapter 6 a dynamic process model for the main blow was developed. This
dynamic model, describing the steel and slag composition, consists of a carbon
and a iron oxide balance and an additional equation describing the influence of
the lance height and the oxygen blowing rate on the amount of iron droplets in
the slag. Using this model the measured step responses in the decarburization
rate and the accumulation rate of oxygen were described satisfactorily.

In chapter 7 the dynamic process model described in chapter 6 was extended so
that it describes the entire batch. The dynamic model predicts the steel tem-
perature, steel composition and slag composition. The model was validated
using the measured decarburization rate and accumulation rate of oxygen of
which the variance accounted for is 73% and 63% respectively.

The dynamic model is less accurate in the prediction of the steel temperature
and steel carbon concentration at the end of the batch than the static model
described in chapter 5. The dynamic model should, therefore, be used in com-
bination with the static model.

In chapter 8 a slop probability model was described. It was shown, that the
majority of slopping batches can be modeled using a statistical two layer hier-
archical model. In the first layer of the model a boolean expression is used to
identify the slop sensitive period. In the second layer of the model, a logistic
model is used to calculate the probability of slopping. This simple model cor-
rectly detects 73% of the slopping batches and 71% of the non-slopping batches.

In chapter 9 basic oxygen steelmaking was dynamically optimized with the
goal to minimize the batch time and to prevent slopping. The dynamic model
described in chapters 6 and 7 was used as state equations and the slop proba-
bility model described in chapter 8 was used as a constraint. It was derived,
that dynamic optimization results in a bang-bang control strategy.
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Simulations showed, that by using the optimal control strategy, the batch time
could be reduced with 4.6%. Because of modeling error, the reduction in batch
time might deviate from this calculated reduction when the optimal control
strategy is implemented. The calculated optimal control strategy is, however,
an indication of how the control variables can be changed to reduce the batch
time and to prevent slopping.
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